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Frame To Samples
Convert frame-based data to sample stream
Library: Wireless HDL Toolbox / I/O Interfaces

Description
The Frame To Samples block flattens frame-based input into a stream of samples. The block also
returns a stream of corresponding control signals that indicate sample validity and the boundaries of
the frame. You can configure idle cycles inserted between samples or between frames, and how many
values represent each sample. See “Streaming Sample Interface” for details of the streaming format.

Use this block to generate input for a subsystem targeted for HDL code generation. This block does
not support HDL code generation.

Ports
Input

frame — Frame of input samples
column vector

Frame of input samples, specified as a column vector. All samples in the vector are considered valid.
Each frame must be the same size.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Output

sample — Output sample stream
scalar | vector

Output sample stream, returned Output size values at a time. The output stream includes idle
samples as specified by Idle cycles between samples and Idle cycles between frames. Each
output sample has a corresponding set of control signals on the ctrl port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.
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• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Parameters
Idle cycles between samples — Number of idle cycles to insert after each sample
0 (default) | integer

Number of idle cycles to insert after each sample, specified as a scalar integer. The block returns a
vector of Output size zeros for each idle cycle and sets all control signals to 0 (false).

Idle cycles between frames — Number of idle cycles to insert at the end of each frame
0 (default) | integer

Number of idle cycles to insert at the end of each frame, specified as a scalar integer. The block
returns a vector of Output size zeros for each idle cycle and sets all control signals to 0 (false).

Output size — Number of values representing each sample
1 (default) | positive integer

Number of values representing each sample, specified as a positive integer scalar. The block outputs
a vector of Output size values. Each vector has one corresponding set of control signals. For
example, you can use this parameter to serialize turbo-encoded samples. In the LTE standard, the
turbo code rate is 1/3, so each sample is represented by one systematic value and two parity values:
S_n, P1_n, and P2_n. In this case, set Output size to 3.

Compose output from interleaved input samples — Order of output samples relative to
input order
off (default) | on

Order of output samples relative to input order, when more than one value represents each sample.
For example, for 1/3 turbo-encoded samples, the input frame can be ordered [S_1 P1_1 P2_1 S_2
P1_2 P2_2] or [S_1 S_2 P1_1 P1_2 P2_1 P2_2]. In the first case, the output is two vectors,
[S_1 P1_1 P2_1] and [S_2 P1_2 P2_2]. To achieve the same output in the second case, select
Compose output from interleaved input samples.

Dependencies

This parameter applies when Output size is greater than one.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink® accelerator and rapid accelerator modes
and for DPI component generation.
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See Also
Blocks
Samples To Frame

Functions
whdlFramesToSamples

Introduced in R2017b
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Samples To Frame
Convert sample stream to frame-based data
Library: Wireless HDL Toolbox / I/O Interfaces

Description
The Samples To Frame block reconstructs frame-based data from a stream of samples and its
corresponding control signals. It removes any idle or nonvalid samples from the data. See “Streaming
Sample Interface” for details of the streaming format.

Use this block to process output from a subsystem targeted for HDL code generation. This block does
not support HDL code generation.

Ports
Input

sample — Stream of samples
scalar | vector

Stream of samples, specified as a scalar or vector. Vector input values represent a single sample, such
as turbo-encoded samples represented by one systematic value and two parity values. The stream can
include idle cycles between samples and between frames. Idle samples are discarded. double and
single are supported for simulation but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus
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Output

frame — Frame of output samples
column vector

Frame of output samples, returned as a column vector. Each frame is the same size. If the input frame
is smaller than Output size, the block pads the frame with zeroes. If the output frame is larger than
the Output size, the block forms the frame by using the first Output size samples. You can
optionally output the number of valid samples in each frame on the len port.

valid — Validity of output frame
scalar

Validity of output frame, returned as a Boolean scalar. This port returns 1 (true) when the values on
the frame and len (optional) ports, are valid.
Data Types: Boolean

len — Number of valid samples in output frame
integer

Number of valid samples in output frame, returned as an integer. The input sample stream can have
frames of different sizes. The block returns a constant size vector on the frame port, padded with
zeroes when the input frame is smaller than Output size. The len port indicates how many valid
samples are in the output frame. If the output frame is larger than the Output size, the block forms
the frame by using the first Output size samples.
Data Types: double

Parameters
Input size — Number of values representing each sample
1 (default) | positive integer

Number of values representing each sample, specified as a positive integer scalar. The block accepts
a vector of Input size values. Each vector has one corresponding set of control signals. For example,
you can use this parameter for turbo-encoded samples. In the LTE standard, the turbo code rate is
1/3, so each sample is represented by one systematic value and two parity values: S_n, P1_n, and
P2_n. In this case, set Input size to 3.

Frame search window — Number of input cycles to buffer
1 (default) | positive integer

Number of input cycles to buffer before attempting to form an output frame, specified as an integer.
The block simulates faster when this parameter is larger. However, the block returns at most one
frame from each search window. If more than one frame fits in this window, the block returns the first
one it finds and drops the later frames. The default setting, 1 cycle, never drops frames, but results in
slower simulation. Therefore, it is a best practice to set this parameter to the minimum number of
cycles per frame, including idle cycles.

For example, calculate the valid cycles and idle cycles representing each frame. Each cycle may
include more than one sample, depending on your Input size (samplesize) setting.
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% Exact setting: includes idle cycles 
totalframesize = ((framesamples/samplesize)*...
    (idlecyclesbetweensamples+1))+idlecyclesbetweenframes;

If the frame and sample spacing is variable or unknown, then a conservative compromise is to set the
Frame search window to the minimum number of valid cycles per frame. For instance, for a turbo
encoder block, the output frame size depends on the coding rate, 1/R, and tail bits specified by the
LTE standard. The output data has R samples per cycle. This calculation does not include any idle
cycles between samples or between frames.

% Conservative setting: number of valid output cycles, without idles
encoderrate = 3;
numtailbits = 12;
framesize = (framesamples+numtailbits)/encoderrate;

Output size — Maximum samples per frame
1024 (default) | positive integer

Maximum number of samples per frame, specified as an integer. The input sample stream can have
frames of different sizes. The block returns a constant size vector, padded with zeroes if the frame is
smaller than Output size. If the block receives a frame larger than Output size, it truncates the
frame.

Compose output from interleaved input samples — Order of output samples relative to
input order
off (default) | on

Order of output samples relative to input order, when more than one value represents each sample.
For example, 1/3 turbo-encoded samples are represented by [S_1 P1_1 P2_1] and [S_2 P1_2
P2_2]. The default output order is [S_1 P1_1 P2_1 S_2 P1_2 P2_2]. To reorder the samples so
that systematic and parity values are grouped together, select Compose output from interleaved
input samples. The output order is then [S_1 S_2 P1_1 P1_2 P2_1 P2_2].

Enable frame length output port — Output number of valid samples
off (default) | on

Enable frame length output port. Select this option to return the number of valid samples in each
output frame. The length is returned on the len port and is qualified by the valid signal. Use this
option when the sample stream has variable size frames or when a downstream block requires the
frame size as input, such as LTE Turbo Decoder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

See Also
Blocks
Frame To Samples
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Functions
whdlSamplesToFrames

Introduced in R2017b
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FIL Frame To Samples
Convert frame-based data to sample stream for FPGA-in-the-loop
Library: Wireless HDL Toolbox / I/O Interfaces

Description
The FIL Frame To Samples block performs the same frame-to-sample conversion as the Frame To
Samples block. It returns output data as vectors of the entire frame of samples. The block returns
control signal vectors of the same width as the sample data. This optimization makes more efficient
use of the communication link between the FPGA board and your Simulink simulation when using
FPGA-in-the-loop (FIL). To run FPGA-in-the-loop, you must have an HDL Verifier™ license.

When you generate a programming file for a FIL target in Simulink, the tool creates a model to
compare the FIL simulation with your Simulink design. For Wireless HDL Toolbox™ designs, the FIL
block in that model replicates the sample-streaming interface to send one sample at a time to the
FPGA. You can modify the autogenerated model to use the FIL Frame To Samples and FIL Samples To
Frame blocks to improve communication bandwidth with the FPGA board by sending one frame at a
time. For how to modify the autogenerated model, see “FPGA-in-the-Loop”.

Ports
Input

frame — Frame of input samples
column vector

Frame of input samples, specified as a column vector. All samples in the vector are considered valid.
Each frame must be the same size.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

Output

sampleN — Sample stream
vector

Stream of samples, returned as a vector representing an entire frame. The output stream includes
idle cycles between samples and between frames as specified in the block parameters.

 FIL Frame To Samples
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If you set Output size greater than one, the block shows one port for each output value. In this case,
a single sample is represented by N values, such as turbo-encoded samples represented by one
systematic value and two parity values. The output data is one vector for each port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

start — Start of frame
vector

Start of frame, returned as a Boolean vector containing one value for each sample in the frame. This
signal is 1 (true) for one timestep corresponding to the first valid sample of the frame.
Data Types: Boolean

end — End of frame
vector

End of frame, returned as a Boolean vector containing one value for each sample in the frame. This
signal is 1 (true) for one timestep corresponding to the last valid sample of the frame.
Data Types: Boolean

valid — Validity of samples
vector

Validity of samples, returned as a Boolean vector containing one value for each sample in the frame.
This signal is 1 (true) on timesteps that correspond to valid samples.
Data Types: Boolean

Parameters
Idle cycles between samples — Number of idle cycles to insert after each sample
0 (default) | integer

Number of idle cycles to insert after each sample, specified as a scalar integer. The block returns a
zero on each sampleN port for each idle cycle and sets all control signals to 0 (false).

Idle cycles between frames — Number of idle cycles to insert at the end of each frame
0 (default) | integer

Number of idle cycles to insert at the end of each frame, specified as a scalar integer. The block
returns a zero on each sampleN port for each idle cycle and sets all control signals to 0 (false).

Output size — Number of values representing each sample
1 (default) | positive integer

Number of values representing each sample, specified as a positive integer scalar. The block has
Output size output sample ports. The control signals apply to all sampleN ports.

For example, you can use this parameter to serialize turbo-encoded samples. In the LTE standard, the
turbo code rate is 1/3, so each sample is represented by one systematic value and two parity values:
S_n, P1_n, and P2_n. In this case, set Output size to 3.

1 Blocks

1-10



Compose output from interleaved input samples — Order of output samples relative to
input order
off (default) | on

Order of output samples relative to input order, when more than one value represents each sample.

For example, for 1/3 turbo-encoded samples, the input frame can be ordered [S_1 P1_1 P2_1 S_2
P1_2 P2_2] or [S_1 S_2 P1_1 P1_2 P2_1 P2_2]. In the first case, the output is two vectors,
[S_1 P1_1 P2_1] and [S_2 P1_2 P2_2]. To achieve the same output in the second case, select
Compose output from interleaved input samples.

Dependencies

This parameter applies when Output size is greater than one.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

See Also
Frame To Samples | FIL Samples To Frame

Topics
“Streaming Sample Interface”
“FPGA-in-the-Loop”

Introduced in R2017b
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FIL Samples To Frame
Convert sample stream from FPGA-in-the-loop to frame-based data
Library: Wireless HDL Toolbox / I/O Interfaces

Description
The FIL Samples To Frame block performs the same sample-to-frame conversion as the Samples To
Frame block. It accepts input data as vectors of the entire frame of samples. The block expects
control signal input vectors of the same width as the sample data. This optimization speeds up the
communication link between the FPGA board and your Simulink simulation when using FPGA-in-the-
loop. To run FPGA-in-the-loop, you must have an HDL Verifier license.

When you generate a programming file for a FIL target in Simulink, the tool creates a model to
compare the FIL simulation with your Simulink design. For Wireless HDL Toolbox designs, the FIL
block in that model replicates the sample-streaming interface to send one sample at a time to the
FPGA. You can modify the autogenerated model to use the FIL Frame To Samples and FIL Samples To
Frame blocks to improve communication bandwidth with the FPGA board by sending one frame at a
time. For how to modify the autogenerated model, see “FPGA-in-the-Loop”.

Ports
Input

sampleN — Stream of samples
vector

Stream of samples, specified as a vector representing an entire frame. The stream can include idle
cycles between samples and between frames. Idle samples are discarded.

If you set Number of input samples greater than one, the block shows one port for each input
value. In this case, a single sample is represented by N values, such as turbo-encoded samples
represented by one systematic value and two parity values. The input data is one vector for each port.
The control signals apply to all sampleN ports.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

start — Start of frame
vector

Start of frame, specified as a Boolean vector containing one value for each sample in the frame. This
signal is 1 (true) for one timestep corresponding to the first valid sample of the frame.
Data Types: Boolean
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end — End of frame
vector

End of frame, specified as a Boolean vector containing one value for each sample in the frame. This
signal is 1 (true) for one timestep corresponding to the last valid sample of the frame.
Data Types: Boolean

validIn — Validity of samples
vector

Validity of samples, specified as a Boolean vector containing one value for each sample in the frame.
This signal is 1 (true) on timesteps that correspond to valid samples.
Data Types: Boolean

Output

frame — Frame of output samples
column vector

Frame of output samples, returned as a column vector. Each frame is the same size. If the input frame
is smaller than Output size, the block pads the frame with zeroes. If the output frame is larger than
the Output size, the block forms the frame by using the first Output size samples. You can
optionally output the number of valid samples in each frame on the len port.

validOut — Validity of output frame
scalar

Validity of output frame, returned as a Boolean scalar. This port returns 1 (true) when the values on
the frame and len (optional) ports, are valid.
Data Types: Boolean

len — Number of valid samples in output frame
integer

Number of valid samples in output frame, returned as an integer. The input sample stream can have
frames of different sizes. The block returns a constant size vector on the frame port, padded with
zeroes when the input frame is smaller than Output size. The len port indicates how many valid
samples are in the output frame. If the output frame is larger than the Output size, the block forms
the frame by using the first Output size samples.
Data Types: double

Parameters
Number of input samples — Number of values representing each sample
1 (default) | positive integer

Number of values representing each sample, specified as a positive integer scalar. The block has one
sampleN port for each value. The control signals apply to all sampleN ports. For example, you can
use this parameter for turbo-encoded samples. In the LTE standard, the turbo code rate is 1/3, so
each sample is represented by one systematic value and two parity values: S_n, P1_n, and P2_n. In
this case, set Number of input samples to 3.
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Output size — Maximum samples per frame
1024 (default) | positive integer

Maximum number of samples per frame, specified as an integer. The input sample stream can have
frames of different sizes. The block returns a constant size vector, padded with zeroes if the frame is
smaller than Output size. If the block receives a frame larger than Output size, it truncates the
frame.

Compose output from interleaved input samples — Order of output samples relative to
input order
off (default) | on

Order of output samples relative to input order, when more than one value represents each sample.
For example, 1/3 turbo-encoded samples are represented by [S_1 P1_1 P2_1] and [S_2 P1_2
P2_2]. The default output order is [S_1 P1_1 P2_1 S_2 P1_2 P2_2]. To reorder the samples so
that systematic and parity values are grouped together, select Compose output from interleaved
input samples. The output order is then [S_1 S_2 P1_1 P1_2 P2_1 P2_2].

Enable frame length output port — Output number of valid samples
off (default) | on

Enable frame length output port. Select this option to return the number of valid samples in each
output frame. The length is returned on the len port and is qualified by the valid signal. Use this
option when the sample stream has variable size frames or when a downstream block requires the
frame size as input, such as LTE Turbo Decoder.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

See Also
FIL Frame To Samples | Samples To Frame

Topics
“Streaming Sample Interface”
“FPGA-in-the-Loop”

Introduced in R2017b
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Sample Control Bus Creator
Create control signal bus for use with Wireless HDL Toolbox blocks
Library: Wireless HDL Toolbox / Utilities

Description
The Sample Control Bus Creator block creates a samplecontrol bus for modeling streaming control
signals in communication systems for hardware. See “Sample Control Bus”.

The block is an implementation of the Simulink Bus Creator block. See Bus Creator for more
information.

Ports
Input

start — Start of frame
scalar

Start of frame, specified as a Boolean scalar. This signal is 1 (true) for one time step, corresponding
to the first valid sample of the frame.
Data Types: Boolean

end — End of frame
scalar

End of frame, specified as a Boolean scalar. This signal is 1 (true) for one time step, corresponding
to the last valid sample of the frame.
Data Types: Boolean

valid — Validity of samples
scalar

Validity of samples, specified as a Boolean scalar. This signal is 1 (true) on time steps that
correspond to valid samples.
Data Types: Boolean

Output

ctrl — Control signals accompanying sample stream
samplecontrol bus

 Sample Control Bus Creator
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Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Frame To Samples | Samples To Frame | Sample Control Bus Selector | Bus Creator
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Functions
whdlFramesToSamples | whdlSamplesToFrames

Topics
“Streaming Sample Interface”
“Sample Control Bus”

Introduced in R2017b

 Sample Control Bus Creator
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Sample Control Bus Selector
Select signals from the control signal bus used with Wireless HDL Toolbox blocks
Library: Wireless HDL Toolbox / Utilities

Description
The Sample Control Bus Selector block selects signals from the samplecontrol bus. This bus is
used for modeling streaming control signals in communication systems for hardware. See “Sample
Control Bus”.

The block is an implementation of the Simulink Bus Selector block. See Bus Selector for more
information.

Ports
Input

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Output

start — Start of frame
scalar

Start of frame, returned as a Boolean scalar. This signal is 1 (true) for one time step, corresponding
to the first valid sample of the frame.
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Data Types: Boolean

end — End of frame
scalar

End of frame, returned as a Boolean scalar. This signal is 1 (true) for one time step, corresponding
to the last valid sample of the frame.
Data Types: Boolean

valid — Validity of samples
scalar

Validity of samples, returned as a Boolean scalar. This signal is 1 (true) on time steps that
correspond to valid samples.
Data Types: Boolean

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).
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See Also
Blocks
Frame To Samples | Samples To Frame | Sample Control Bus Creator | Bus Selector

Functions
whdlFramesToSamples | whdlSamplesToFrames

Topics
“Streaming Sample Interface”
“Sample Control Bus”

Introduced in R2017b
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Depuncturer
Reverse puncturing scheme to prepare for decoding
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The Depuncturer block replaces punctured symbols with neutral values as directed by an input
puncture vector. The block returns erasure bits, which indicate the presence of neutral symbols in the
output data stream. The block supports continuous and frame modes of operation. It provides an
interface and architecture suitable for HDL code generation and hardware deployment.

Many wireless communication standards implement different code rates by puncturing patterns with
a base code rate 1/2. The input to the block is a stream of one sample at a time. You can provide
samples represented by hard-decision binary values or soft-decision log-likelihood ratios (LLR). The
block returns output samples as 2-by-1 vectors.

The inserted neutral value depends on the data type of the input sample. For details, see the input
data port.

Ports
Input

data — Input sample
scalar

Input sample, specified as a scalar. The block inserts a neutral value at punctured locations based on
the data type of the input samples.

Input Data Type Inserted Neutral Value
• boolean
• fixdt(0,1,0)

0

fixdt(0,WL,0) 2(WL-1)

uint8 128
uint16 32768
• fixdt(1,WL,0)
• int8
• int16
• single
• double

0

 Depuncturer
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The block treats the input as hard-decision samples when the input type is Boolean or
fixdt(0,1,0). For signed and unsigned numeric types, the block assumes soft-decision samples.
The block treats samples as signed integers for single and double data types, but these data types
are not supported for HDL code generation.

The input sample must have a word length less than or equal to 16 bits, and a fraction length of 0
bits.
Data Types: int8 | int16 | uint8 | uint16 | Boolean | fixdt(0,1,0) | fixdt(S,WL,0) | single
| double

puncVector — Puncture vector
column vector of binary values

Puncture vector, specified as a column vector of binary values. The length of the puncture vector
must be an even number in the range [4, 28]. The length must remain constant. The block removes
initial zeros from the provided vector, up to the first 1 (true). After the first 1 (true), the puncture
vector cannot contain any [1:0] subvector matching [0 0].

For example, IEEE 802.11 WLAN standard [1] supports puncture rates 2/3, 3/4, and 5/6, with
respective vector lengths of 4, 6, and 10. To support these multiple rates, set Puncture vector
source to Input port. To support the largest vector size, the vector length must be 10 for all rates.
For 2/3 and 3/4 rates, pad the puncVector input with zeros to create a 10-element vector. The
puncture vector for rate 3/4 is [1 1 0 1 1 0]'. For a vector length of 10, use [0 0 0 0 1 1 0 1
1 0]' as the input puncVector.

When Operation mode is set to Continuous, the block captures the value of puncVector when
both the syncPunc and input valid ports are 1 (true).

When Operation mode is set to Frame, the block captures the value of puncVector when both
ctrl.start and ctrl.valid are 1 (true).

Dependencies

To enable this port, set Puncture vector source to Input port.
Data Types: Boolean

syncPunc — Puncture synchronization signal
scalar

Puncture synchronization signal, specified as a Boolean scalar value. This input is a control signal
that synchronizes the puncture vector input with the input sample. When both syncPunc and valid
are 1 (true), the block aligns the puncture vector to begin puncturing. The block captures the vector
from either the puncVector input port or the Puncture vector parameter. The block ignores the
puncVector port when syncPunc is 0 (false).

Dependencies

To enable this port, set Operation mode to Continuous. When Operation mode is Frame, the
block synchronizes the puncture vector using control signals in the input ctrl bus.
Data Types: Boolean

valid — Validity of input samples
scalar
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Control signal that indicates when the sample from data input port is valid. When valid is 1 (true),
the block captures the values of the data input port. When valid is 0 (false), the block ignores the
input samples.

Dependencies

To enable this port, set Operation mode to Continuous.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

Dependencies

To enable this port, set Operation mode to Frame.
Data Types: bus

Output

data — Output sample
2-by-1 column vector

Output sample, returned as a 2-by-1 column vector. The data type is same as the data type of the
input samples.
Data Types: int8 | int16 | uint8 | uint16 | Boolean | fixdt(0,1,0) | fixdt(S,WL,0) | single
| double

valid — Validity of output data samples
scalar

Control signal that indicates when the sample from the data output port is valid. The block sets the
valid port to 1 (true) when there is a valid sample on the output data port.

Dependencies

Tho enable this port, set Operation mode to Continuous.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

Dependencies

To enable this port, set Operation mode to Frame.
Data Types: bus
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erasure — Neutral symbol locations
2-by-1 column vector

Neutral symbol locations, returned as a 2-by-1 column vector corresponding to the output samples.
When erasure is 1 (true), the corresponding output data element is a depunctured neutral value.
Data Types: Boolean

Parameters
Operation mode — End of frame behavior
Continuous (default) | Frame

End of frame behavior, specified as one of these modes:

• Continuous – Allow changes to puncVector at any time. To force the block to capture the new
puncture vector, set syncPunc to 1(true). This waveform shows ufix4 input samples
depunctured in Continuous mode.

• Frame – You can only change puncVector at the start of a frame, indicated by ctrl.start. This
waveform shows ufix4 input samples depunctured in Frame mode.

Puncture vector source — Source of puncture vector
Input port (default) | Property

Source of puncture vector, specified as either:
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• Input port – Specify the puncture vector using the puncVector port.
• Property – Specify the puncture vector using the Puncture vector parameter.

Puncture vector — Locations to insert neutral values
[1;1;0;1;1;0] (default) | column vector of binary values

Puncture vector, specified as a column vector of binary values. The length of the puncture vector
must be an even number in the range [4, 28]. The default value is the puncture vector for 3/4 code
rate of IEEE 802.11 WLAN [1].

The puncture vector cannot contain any [1:0] subvector matching [0 0].

Dependencies

To enable this port, set Puncture vector source to Property.

Algorithms
The depuncturing algorithm shifts through each [1:0] subvector of the puncture vector. The subvector
has three valid patterns: [0 1], [1 0], or [1 1]. Based on the subvector, neutral samples are inserted in
place of punctured samples. The erasure output is the inverse of the puncture subvector. The block
returns an error when it encounters the invalid subvector [0 0].

Latency

When you set Operation mode to Continuous, the latency from valid input to valid output in is
seven cycles. When you set Operation mode to Frame, the latency is six cycles.
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Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
Xilinx®Zynq®-7000 ZC706 board. The block is using ufix4 input samples, in continuous mode with
default settings. The design achieves a clock frequency of 590 MHz.

Resource Number Used
LUT 54
FFS 67
Xilinx LogiCORE® DSP48 0
Block RAM (16k) 0

If you set Puncture vector source to Property, the design uses fewer LUT and FFS resources.

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology — Telecommunications and

information exchange between systems — Local and metropolitan area networks — Specific
requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications — Amendment 4: Enhancements for Very High Throughput for Operation
in Bands below 6 GHz.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).
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OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Viterbi Decoder | Puncturer

Introduced in R2018b
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LTE Gold Sequence Generator
Generate Gold sequence
Library: Wireless HDL Toolbox / Utilities

Description
The LTE Gold Sequence Generator block returns Gold sequences generated using the polynomial and
shift length specified by LTE standard TS 36.212 [1]. Gold codes are pseudorandom sequences that
have high autocorrelation and low crosscorrelation. Due to these properties, Gold codes are widely
used in communications systems. For example, they are used to separate different mobile cells
operating on the same frequency. LTE systems use a Gold sequence generator for reference symbols
and for scrambling/descrambling data, such as in MIB and SIB coding and decoding.

This block provides minimal latency by implementing the shift register initialization in parallel.

Use the load control signal to indicate when the init value is valid. Use the enable control signal to
request the next Gold sequence value. The valid signal indicates when an output sample is available.
The first output sample is ready three cycles after enable is asserted. The data and valid outputs
follow the pattern of the enable input.

Ports
Input

load — Load initial shift register value
scalar

When this control signal is set to true (1), the block loads the value on the init port into the shift
register. You can use this signal to restart the sequence at any point in time.
Data Types: Boolean

init — Initial shift register value
scalar | vector
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Initial shift register value, specified as a ufix31 number representing the 31 binary values. To
generate multiple Gold sequence outputs in parallel, specify a vector of initial values to represent
multiple channels.
Data Types: ufix31

enable — Enable sequence generation
scalar

When this control signal is set to true (1), it enables Gold sequence generation.
Data Types: Boolean

Output

data — Generated Gold sequence
scalar | vector

Generated Gold sequence, returned as a Boolean scalar or vector, depending on the size of the init
input. If init is a vector, then data is a vector of the same size, representing sequences on
independent channels.
Data Types: Boolean

valid — Indicates valid output data
scalar

Control signal that indicates when the data output port is valid.
Data Types: Boolean

Algorithms
To avoid long shift latency, the block applies the initial value as a parallel mask. To calculate the
mask, the block divides the initial polynomial by the linear-feedback shift register polynomial.
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Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
Xilinx Zynq-7000 ZC706 board. The design achieves a clock frequency of 625 MHz.

Resource Uses
LUT 86
LUTRAM 0
FFS 107
Block RAM (16K) 0

References
[1] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).
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See Also
Topics
“LTE HDL MIB Recovery”

Introduced in R2018a
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LTE Convolutional Decoder
Decode convolutional-encoded samples using Viterbi algorithm
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The LTE Convolutional Decoder block implements a wrap-around Viterbi algorithm (WAVA) to decode
samples encoded with the tail-biting polynomials specified by LTE standard TS 36.212 [1]. The
convolutional code has constraint length 7 and is tail biting with coding rate 1/3 and octal
polynomials G0=133, G1=171 and G2=165. The block provides a hardware-optimized architecture
and interface.

This block uses a streaming sample interface with a bus for related control signals. This interface
enables the block to operate independently of frame size, and to connect easily with other Wireless
HDL Toolbox blocks. The block accepts and returns a value representing a single sample, and a bus
containing three control signals. These signals indicate the validity of each sample and the
boundaries of the frame. To convert a matrix into a sample stream and these control signals, use the
Frame To Samples block or the whdlFramesToSamples function. For a full description of the
interface, see “Streaming Sample Interface”.

The block accepts input samples representing soft or hard decisions. Each sample is a 3-by-1 vector,
where the three values represent the bits encoded by the three polynomials, [G0 G1 G2].

Decoding of a message of M samples requires 2*M+140 cycles, assuming contiguous valid input.
Therefore, you must leave at least that many idle cycles between input frames. Alternatively, you can
use the output signal ctrl.end to determine when the block is ready for new input.

This waveform shows an input message of 100 samples, with 340 idle cycles between frames. The
input data is a vector of three encoded bits. The input and output ctrl buses are expanded to show
the control signals. start and end show the frame boundaries, and valid qualifies the data
samples.
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Ports
Input

data — Input sample
3-by-1 column vector

Input sample, specified as a 3-by-1 column vector. The block performs soft-decision decoding when
the input type is signed fixed point or signed integer, or performs hard-decision decoding when the
input type is Boolean or fixdt(0,1,0). The block performs unquantized soft-decision decoding for
single and double types, but this mode is not supported for HDL code generation.

For a hardware soft-decision implementation, an integer or fixed-point type that is three or four bits
wide is recommended. This input word length achieves decode performance while optimizing timing
and resource use when the design is synthesized to an FPGA. The input data type must be less than
16 bits wide. Internal data types are derived from this data type and lower precision types can result
in loss of decoding performance.

Values less than zero are most likely a logical 0, while values greater than zero are most likely a
logical 1. The absolute value determines the level of confidence. For example, the table shows the
confidence levels used if the input is sfix4 (WL=4, FL=0).

Soft Value –8, –7, –6, –5, –4, –3, –2,
–1

0 1, 2, 3, 4, 5, 6, 7

Logic Level logical 0 unknown logical 1
Confidence high → low none low → high

Data Types: Boolean | fixdt(0,1,0) | fixdt(1,WL,FL) | int8 | int16 | single | double

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.
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• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Output

data — Output sample
scalar

Output sample, returned as a binary scalar value.

double and single are supported for simulation but not for HDL code generation.
Data Types: single | double | Boolean | ufix1

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Parameters
Maximum message length — Maximum input frame size
1024 (default) | positive integer

Maximum input frame size, specified as a positive integer from 6 to 2048. The block uses this
parameter to determine the amount of RAM required to store intermediate decisions. If you do not
specify a power of two, the block uses the next largest power of two.

If an input frame is larger than the specified maximum message length, the block returns a warning.

Algorithms
The LTE Convolutional Decoder block implements a wrap-around Viterbi algorithm (WAVA). The input
message is cyclically extended to provide training samples for the Viterbi decoder. This algorithm
works with tail-biting convolutional encoders, where the encoder state is the same at the beginning
and end of a message.

The diagram shows a high-level view of the decoder architecture.
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First, the block extends the message by repeating 2*T message samples, where T is 40 samples. This
value of T provides a balance between bit error rate (BER) and optimizing hardware resources. The
block uses the extended message to compute branch metrics, state metrics, and branch decisions
using add-compare-select operations. The metric word lengths are derived from the data type of the
input sample. The block stores a representation of the trellis that is based on the computed decisions.
Then it performs traceback decoding. Once the message sample values are decided, the block
removes the duplicate training samples and reorders the samples for output.

Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
Xilinx Zynq-7000 ZC706 board. The implementation is for sfix4 input samples, and a max message
size of 1024 (default). HDL code was generated using these options:

• Adaptive pipelining: off
• Minimize clock enables: on
• Reset type: Synchronous

The design achieves a clock frequency of 308.45 MHz.

Resource Uses
LUT 3575
FFS 1776
Xilinx LogiCORE DSP48 0
Block RAM (16K) 5

The input bit width affects the timing and the resources used in metric computation. The maximum
message size affects the amount of RAM used in the cyclic extension and traceback stages.

References
[1] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

This block does not have any HDL Block Properties.

See Also
Blocks
LTE Convolutional Encoder

Functions
lteConvolutionalEncode | lteConvolutionalDecode

Introduced in R2017b
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LTE Convolutional Encoder
Encode binary samples using tail-biting convolutional algorithm
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The LTE Convolutional Encoder block implements the encoding polynomials specified by LTE
standard TS 36.212 [1]. The convolutional code has constraint length 7 and is tail biting with coding
rate 1/3 and octal polynomials G0=133, G1=171 and G2=165. The block provides a hardware-
optimized architecture and interface.

This block uses a streaming sample interface with a bus for related control signals. This interface
enables the block to operate independently of frame size, and to connect easily with other Wireless
HDL Toolbox blocks. The block accepts and returns a value representing a single sample, and a bus
containing three control signals. These signals indicate the validity of each sample and the
boundaries of the frame. To convert a matrix into a sample stream and these control signals, use the
Frame To Samples block or the whdlFramesToSamples function. For a full description of the
interface, see “Streaming Sample Interface”.

The message size can change dynamically. The encoded output bits for each input bit are returned as
a 3-by-1 vector, [G0 G1 G2].

The block takes M + 5 cycles to encode a frame of M samples. Therefore, you must leave M + 5 idle
cycles between input frames. Alternatively, you can use the output signal ctrl.end to determine when
the block is ready for new input.

This waveform shows an input message of 40 samples, with 45 idle cycles between frames. The
output data is a vector of three encoded bits. The input and output ctrl buses are expanded to show
the control signals. start and end show the frame boundaries, and valid qualifies the data
samples.
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Ports
Input

data — Input sample
scalar

Input sample, specified as a binary scalar. double and single are supported for simulation but not
for HDL code generation.
Data Types: single | double | Boolean | ufix1

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Output

data — Encoded sample
3-by-1 column vector

Encoded sample, returned as a 3-by-1 column vector. Each encoded sample is represented by three
bits, one from each encoder polynomial.

The output data type matches the input data type.
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Data Types: single | double | Boolean | ufix1

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Parameters
Maximum message length — Maximum input frame size
1024 (default) | positive integer

Maximum input frame size, specified as a positive integer from 6 to 216. This parameter defines the
required amount of frame memory. If you do not specify a power of two, the block uses the next
largest power of two.

If an input frame is larger than the specified maximum message length, the block returns a warning.

Tips
• You cannot use this block inside an Enabled Subsystem or Resettable Subsystem.

Algorithms
The block implements a tail-biting convolutional encoder as specified by LTE standard TS 36.212 [1].

Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
Xilinx Zynq-7000 ZC706 board. The implementation is for a max message size of 1024 (default). The
design achieved a clock frequency of 476.2 MHz.
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Resource Uses
LUT 79
LUTRAM 16
FFS 46
Block RAM (16K) 0

The maximum message size affects the amount of RAM used.

References
[1] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).
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See Also
Blocks
LTE Convolutional Decoder

Functions
lteConvolutionalEncode | lteConvolutionalDecode

Introduced in R2017b
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LTE CRC Decoder
Detect errors in input samples using checksum
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The LTE CRC Decoder block calculates a cyclic redundancy check (CRC) and compares it with the
appended checksum, for each frame of streaming data samples. You can select from the polynomials
specified by LTE standard TS 36.212 [1]. The block provides a hardware-optimized architecture and
interface.

This block uses a streaming sample interface with a bus for related control signals. This interface
enables the block to operate independently of frame size, and to connect easily with other Wireless
HDL Toolbox blocks. The block accepts and returns a value representing a single sample, and a bus
containing three control signals. These signals indicate the validity of each sample and the
boundaries of the frame. To convert a matrix into a sample stream and these control signals, use the
Frame To Samples block or the whdlFramesToSamples function. For a full description of the
interface, see “Streaming Sample Interface”.

Ports
Input

data — Input sample
binary scalar | unsigned integer scalar | binary vector

Input sample, specified as a binary scalar, unsigned integer scalar, or binary vector. The vector size
must be less than or equal to the length of the polynomial. The CRC length also must be divisible by
the vector size. For example, for polynomial type CRC24A, the valid vector sizes are 24, 12, 8, 6, 4, 3,
2, and 1. An integer input is interpreted as a binary word. For example, vector input [0 0 0 1 0 0
1 1] is equivalent to uint8 input 19.

double and single are supported for simulation but not for HDL code generation.
Data Types: single | double | Boolean | ufix1 | uint8 | uint16 | uint32

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
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• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Output

data — Output sample
binary scalar | integer scalar | binary vector

Output sample, returned a binary scalar, unsigned integer scalar, or binary vector of the same data
type and size as the input samples. The checksum is removed from the end of the frame.

double and single binary values are supported for simulation but not for HDL code generation.
Data Types: single | double | Boolean | ufix1 | uint8 | uint16 | uint32 | ufixN

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

err — Indicator of checksum mismatch
binary scalar | integer scalar

Indicator of checksum mismatch, returned as a binary scalar or an integer scalar. If you select Full
checksum mismatch, this port returns the integer XOR result of the calculated checksum against
the appended checksum. The err value is valid when ctrl.end is 1 (true). The data type of this port
matches the data type of the input samples.
Data Types: single | double | Boolean | ufix1 | uint8 | uint16 | uint32 | ufixN

Parameters
CRC Type — Encode polynomial
CRC16 (default) | CRC8 | CRC24A | CRC24B

The encode polynomial options are the four CRC types described in the LTE standard TS 36.212 [1],
Section 5.1.1.

Full checksum mismatch — Return bit-by-bit mismatch information
off (default) | on
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When this parameter is not selected, the err port returns a Boolean value indicating whether any
checksum bits are mismatched, after applying CRC Mask. When this parameter is selected, the err
port returns an integer that represents the locations of bit mismatches in the checksum.

CRC Mask — Mask applied to checksum
0 (default) | integer from 0 to 2CRCLength – 1

Mask applied to checksum, specified as an integer representing a binary word from 0 to 2CRCLength – 1.
This mask is typically a Radio Network Temporary Identifier (RNTI).
Dependencies

This parameter appears when Full checksum mismatch is cleared.

Algorithms
When you use vector or integer input, the block implements a parallel CRC algorithm [2]. The
implementation is the same as the algorithm used by the Communications Toolbox™ blocks General
CRC Generator HDL Optimized and General CRC Syndrome Detector HDL Optimized.

To provide high throughput for modern communications systems, the block implements the CRC
algorithm with a parallel architecture. This architecture recursively calculates M bits of a CRC
checksum for each W input bits. At the end of the frame, the final checksum result is appended to the
message. For a polynomial length of M, the recursive checksum calculation for W bits in parallel is

X′ = FW( × )X( + )D .

FW is an M-by-M matrix that selects elements of the current state for the polynomial calculation with
the new input bits. D is an M-element vector that provides the new input bits, ordered in relation to
the generator polynomial and padded with zeros. The block implements the (×) with logical AND and
(+) with logical XOR.
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Latency

This waveform shows a 40-sample frame, input two samples at a time, encoded with a CRC16
polynomial. There is no gap between input frames. The output stream has removed the checksum, so
there are eight cycles between output frames. The latency of the decoder is 3*CRCLength/
InputSize + 5, assuming contiguous valid input samples.

Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
Xilinx Zynq-7000 ZC706 board. The implementation is for a CRC24 polynomial, with no CRC Mask or
output checksum mismatch, and scalar input. The design achieves 526.31 MHz clock frequency.

Resource Uses
LUT 210
LUTRAM 8
FFS 305
Block RAM (16K) 0

A larger input vector size increases throughput and increases resource use.

References
[1] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

[2] Campobello, Giuseppe, Giuseppe Patane, and Marco Russo. "Parallel CRC Realization." IEEE
Transactions on Computers. Vol. 52, No. 10, October 2003, pp. 1312–1319.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.
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HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
LTE CRC Encoder

Functions
lteCRCDecode | lteCRCEncode

Introduced in R2017b
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LTE CRC Encoder
Generate checksum and append to input sample stream
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The LTE CRC Encoder block calculates and appends a cyclic redundancy check (CRC) checksum for
each frame of streaming data samples. You can select from the polynomials specified by LTE standard
TS 36.212 [1]. The block provides a hardware-optimized architecture and interface.

This block uses a streaming sample interface with a bus for related control signals. This interface
enables the block to operate independently of frame size, and to connect easily with other Wireless
HDL Toolbox blocks. The block accepts and returns a value representing a single sample, and a bus
containing three control signals. These signals indicate the validity of each sample and the
boundaries of the frame. To convert a matrix into a sample stream and these control signals, use the
Frame To Samples block or the whdlFramesToSamples function. For a full description of the
interface, see “Streaming Sample Interface”.

You must not apply another frame before the previous frame has completed. The hardware-friendly
algorithm adds (CRCLength + 3)/InputSize cycles of latency. To account for the additional cycles
of the appended checksum samples, and the latency, you must apply a minimum spacing of
(2*CRCLength + 3)/InputSize between input frames. Alternatively, you can use the output
signal ctrl.end to determine when the block is ready for new input. If you apply the next frame too
early, the ctrl.start signal resets the checksum calculation and truncates the previous frame.

This waveform shows a 40-sample frame, input two samples at a time to a CRC16 encoder. The gap
between the input frames is therefore 8 cycles. Due to the insertion of the checksum, the output
ctrl.valid signal stays continuously high with no gaps between frames. The input and output ctrl
buses are expanded to show the control signals. start and end show the frame boundaries, and
valid qualifies the data samples.

 LTE CRC Encoder

1-47



Ports
Input

data — Input sample
binary scalar | unsigned integer scalar | binary vector

Input sample, specified as a binary scalar, unsigned integer scalar, or binary vector. The vector size,
InputSize, must be less than or equal to the length of the polynomial. The CRC length also must be
divisible by the vector size. For example, for polynomial type CRC24A, the valid vector sizes are 24,
12, 8, 6, 4, 3, 2, and 1. An integer input is interpreted as a binary word. For example, vector input [0
0 0 1 0 0 1 1] is equivalent to uint8 input 19.

double and single are supported for simulation but not for HDL code generation.
Data Types: single | double | Boolean | ufix1 | uint8 | uint16 | uint32 | ufixN

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Output

data — Output sample
binary scalar | integer scalar | binary vector
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Output sample, returned as a binary scalar, integer scalar, or binary vector of the same data type and
size as the input sample. The block appends the calculated and masked checksum at the end of each
frame.

double and single binary values are supported for simulation but not for HDL code generation.
Data Types: single | double | Boolean | ufix1 | uint8 | uint16 | uint32 | ufixN

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Parameters
CRC Type — Encode polynomial
CRC16 (default) | CRC8 | CRC24A | CRC24B

The encode polynomial options are the four CRC types described in the LTE standard TS 36.212 [1],
Section 5.1.1.

CRC Mask — Mask applied to checksum
0 (default) | integer from 0 to 2CRCLength – 1

Mask applied to checksum, specified as an integer representing a binary word from 0 to 2CRCLength – 1.
This mask is typically a Radio Network Temporary Identifier (RNTI).

Algorithms
When you use vector or integer input, the block implements a parallel CRC algorithm [2]. The
implementation is the same as the algorithm used by the Communications Toolbox blocks General
CRC Generator HDL Optimized and General CRC Syndrome Detector HDL Optimized.

To provide high throughput for modern communications systems, the block implements the CRC
algorithm with a parallel architecture. This architecture recursively calculates M bits of a CRC
checksum for each W input bits. At the end of the frame, the final checksum result is appended to the
message. For a polynomial length of M, the recursive checksum calculation for W bits in parallel is

X′ = FW( × )X( + )D .

FW is an M-by-M matrix that selects elements of the current state for the polynomial calculation with
the new input bits. D is an M-element vector that provides the new input bits, ordered in relation to
the generator polynomial and padded with zeros. The block implements the (×) with logical AND and
(+) with logical XOR.
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Latency

The latency from start of input frame to start of output frame is (CRCLength + 3)/InputSize
cycles. The latency from end of input frame to end of output frame is (2*CRCLength + 3)/InputSize
to account for appending the checksum.

Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
Xilinx Zynq-7000 ZC706 board. The implementation is for a CRC24 polynomial and scalar input. The
design achieves 588.3 MHz clock frequency.

Resource Uses
LUT 121
LUTRAM 3
FFS 132
Block RAM (16K) 0

A larger input vector size increases throughput and increases resource use.

References
[1] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

[2] Campobello, Giuseppe, Giuseppe Patane, and Marco Russo. "Parallel CRC Realization." IEEE
Transactions on Computers. Vol. 52, No. 10, October 2003, pp. 1312–1319.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
LTE CRC Decoder

Functions
lteCRCEncode | lteCRCDecode

Introduced in R2017b
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LTE Turbo Encoder
Encode binary samples using turbo algorithm
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The LTE Turbo Encoder block implements the turbo encoder described by LTE standard TS 36.212 [1]
using an interface and architecture optimized for HDL code generation and hardware deployment.
The encoder is a parallel concatenated convolutional code (PCCC) with two 8-state constituent
encoders and an internal interleaver. The first encoder operates on the input data stream, and the
second encoder operates on an interleaved version of the input data. The block terminates each
encoder output with independent tail bits. The coding rate is 1/3. The encoded output bits for each
input bit are returned as a 3-by-1 vector, [S P1 P2]. In this vector, S is the systematic bit, and P1
and P2 are the parity bits from the two encoders.

This block uses a streaming sample interface with a bus for related control signals. This interface
enables the block to operate independently of frame size, and to connect easily with other Wireless
HDL Toolbox blocks. The block accepts and returns a value representing a single sample, and a bus
containing three control signals. These signals indicate the validity of each sample and the
boundaries of the frame. To convert a matrix into a sample stream and these control signals, use the
Frame To Samples block or the whdlFramesToSamples function. For a full description of the
interface, see “Streaming Sample Interface”.

The block can accept new input data after the previous frame is complete. Apply input frames with at
least BlockSize + 16 idle cycles between them. The 16 cycles consists of 12 cycles for pipeline delays
in the algorithm, and 4 cycles of tail bits. This latency does not vary with block size. Or, you can use
the output signal ctrl.end to determine when the block is ready for new input.

This waveform shows an input frame of 40 samples, with 57 idle cycles between frames. The input
and output ctrl buses are expanded to show the control signals. start and end show the frame
boundaries, and valid qualifies the data samples. The optional tail1 and tail2 signals indicate the
cycles when the tail bits from each encoder are valid.
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Ports
Input

data — Input sample
scalar

Input sample, specified as a binary scalar. double and single are supported for simulation but not
for HDL code generation.
Data Types: single | double | Boolean | ufix1

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

blockSize — Turbo code block size
integer

Turbo code block size, specified as an integer. This value must be one of the 188 values specified in
the LTE standard, from 40 to 6144 in these intervals: [40:8:512 528:16:1024 1056:32:2048
2112:64:6144].
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Dependencies

This port appears when you set Block size source to Input port.
Data Types: single | double | uint16 | fixdt(0,13,0)

Output

data — Encoded sample stream
3-by-1 column vector

Encoded sample stream, returned as a 3-by-1 column vector. Each encoded sample is represented by
one systematic bit and two parity bits.

The output data type matches the input data type.
Data Types: single | double | Boolean | ufix1

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

tail1, tail2 — Indicate trellis termination cycles
scalar

Use the optional tail1 and tail2 output ports to indicate the location of the tail bits in the output data
stream. These signals are 1 (true) for the cycles that correspond to the tail bits for each encoder.

The block returns the tail bits in the order specified by the LTE standard TS 36.212 [1]. Each encoder
returns two cycles of encoded tail bits.

Cycle 1 2 3 4
tail1 1 1 0 0
tail2 0 0 1 1
data [E1inK E1outK E1inK

+1]
[E1outK+1 E1inK+2
E1outK+2]

[E2inK E2outK E2inK
+1]

[E2outK+1 E2inK+2
E2outK+2]

Dependencies

Enable these ports by selecting Enable trellis termination valid ports.
Data Types: Boolean
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Parameters
Block size source — How to specify the block size
Input port (default) | Property

Select whether you specify the block size with an input port or enter a fixed value as a parameter. If
you select Property, the Block size parameter appears. If you select Input port, the blockSize
port appears.

Block size — Turbo code block size
6144 (default)

Turbo code block size, specified as an integer. This value must be one of the 188 values specified in
the LTE standard, from 40 through 6144 in these intervals: [40:8:512 528:16:1024
1056:32:2048 2112:64:6144]. This value is registered for each frame, when ctrl.start = 1
(true).

Dependencies

This parameter appears when you set Block size source to Property.

Enable trellis termination valid ports — Enable ports that indicate the tail bit
output samples
off (default) | on

When you select this parameter, the tail1 and tail2 ports appear on the block. These ports return
control signals that indicate the cycles when the output samples are the tail bits for each encoder.

Tips
• You cannot use this block inside an Enabled Subsystem or Resettable Subsystem.

Algorithms
For a hardware implementation, storing the interleave indices is not practical. Supporting the 188
LTE block sizes would require 4 Mb of memory. Therefore, the algorithm uses the interleave
specification to compute the indexes from the block size. This equation defines the interleave pattern:

∏ (i) = (f1 ⋅ i + f2 ⋅ i2)modK

K is the block size, i = 0, 1, …, (K – 1), and f1 and f2 are defined in the LTE standard TS 36.212 [1].

Calculation of the indexes is simplified based on these equations:

π(i + 1) =
π(i) + g(i)          if π(i) + g(i) < K
π(i) + g(i)− K   otherwise

π(0) = 0

g(i + 1) =
g(i) + 2f2          if g(i) + 2f2 < K
g(i) + 2f2− K   otherwise

g(0) = f1 + f2
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Therefore, the block stores f1 and f2 in memory, and uses those two constants and four adders to
calculate the interleave indexes.

When Block size source is set to Property, the block uses two constant coefficients to derive the
read addresses for the fixed block size. When Block size source is set to Input port, the algorithm
saves the 188 pairs of coefficients in a ROM (< 5 Kb). Then the block reads the matching pair at run
time to derive the interleave memory read addresses.

Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
Xilinx Zynq-7000 ZC706 board. The implementation is for a fixed block size of 6144 samples. The
design achieves 312.5 MHz clock frequency.

Resource Uses
LUT 253
LUTRAM 2
FFS 222
BRAM 0.5

The RAM size grows with block size. When you enable the block size port, RAM sufficient for the
largest block size is used.

References
[1] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
LTE Turbo Decoder

Functions
lteTurboEncode | lteTurboDecode | lteDLSCHInfo

Introduced in R2017b
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LTE Turbo Decoder
Decode turbo-encoded samples
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The LTE Turbo Decoder block implements the turbo decoder required by LTE standard TS 36.212 [1]
and provides an interface and architecture optimized for HDL code generation and hardware
deployment. The block iterates over two MAX decoders. You can specify the number of iterations. The
coding rate is 1/3. The block accepts encoded bits as a 3-by-1 vector of soft-coded values, [S P1
P2]. In this vector, S is the systematic bit, and P1 and P2 are the parity bits from the two encoders.

This block uses a streaming sample interface with a bus for related control signals. This interface
enables the block to operate independently of frame size, and to connect easily with other Wireless
HDL Toolbox blocks. The block accepts and returns a value representing a single sample, and a bus
containing three control signals. These signals indicate the validity of each sample and the
boundaries of the frame. To convert a matrix into a sample stream and these control signals, use the
Frame To Samples block or the whdlFramesToSamples function. For a full description of the
interface, see “Streaming Sample Interface”.

The block can accept the next frame only after it has completed decoding the previous frame. You
must leave Iterations*2*HalfIterationLatency+BlockSize+4 idle cycles between input frames. The
half-iteration latency is described in the “Algorithms” on page 1-60 section. Alternatively, you can
use the output signal ctrl.end to determine when the block is ready for new input.

This waveform shows an input frame of 120 samples (+ 4 tail bits), and 2632 idle cycles between
frames. Each input sample is a vector of three fixed-point soft-decision values. The input and output
ctrl buses are expanded to show the control signals. start and end show the frame boundaries, and
valid qualifies the data samples.
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Ports
Input

data — Input sample
three-element vector

Input sample, specified as a three-element integer vector. The values represent soft-coded
probabilities. If the value is negative, the bit is more likely to be 0. If the value is positive, the bit is
more likely to be 1. The first element is the sequential bit, and the other two elements are parity bits.
The block expects input frames of BlockSize + 12 samples. This frame size includes the tail bits, in
the order specified by LTE standard TS 36.212 [1].

For a hardware implementation, use a fixed-point type with two or three integer bits and one to four
fractional bits. Internal data types are derived from this data type, and lower precision types can
result in loss of decoding precision. If the input data type has zero fractional bits or less than two
integer bits, the block returns a warning. double and single are supported for simulation but not
for HDL code generation.
Data Types: fixdt(1,WL,FL) | single | double

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

blockSize — Turbo code block size
integer

Turbo code block size, specified as an integer. This value must be one of the 188 values specified in
the LTE standard, from 40 to 6144 in these intervals: [40:8:512 528:16:1024 1056:32:2048
2112:64:6144].
Dependencies

This port appears when you set Block size source to Input port.
Data Types: single | double | uint16 | fixdt(0,13,0)

Output

data — Output sample
scalar

Output sample, returned as a binary scalar. double and single are supported for simulation but not
for HDL code generation.
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Data Types: single | double | Boolean | ufix1

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Parameters
Block size source — How to specify the block size
Input port (default) | Property

Select whether you specify the block size with an input port or enter a fixed value as a parameter. If
you select Property, the Block size parameter appears. If you select Input port, the blockSize
port appears.

Block size — Turbo code block size
6144 (default)

Turbo code block size, specified as an integer. This value must be one of the 188 values specified in
the LTE standard, from 40 through 6144 in these intervals: [40:8:512 528:16:1024
1056:32:2048 2112:64:6144]. This value is registered for each frame, when ctrl.start = 1
(true).

Dependencies

This parameter appears when you set Block size source to Property.

Number of decoding iterations — How many MAX decoding iterations to perform
6 (default) | positive integer

How many MAX decoding iterations to perform, specified as a positive integer. The decoder
implementation uses a single MAX decoder, with the output data of each half-iteration routed back to
the input. A higher iteration count increases accuracy and adds latency. After about 15 iterations, the
algorithm does not provide further accuracy.

Algorithms
The block implements an iterative decode algorithm using a single decoder and single interleaver.

This diagram shows the conceptual algorithm for one iteration. Although the diagram shows two
decoders and three interleavers, the block actually implements the algorithm using only one decoder
and one interleaver. The decoder performs one half-iteration and interleaves the results. Then the
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output is routed back to the input for the next half-iteration. The interleaver computes the interleave
indexes from the block size. For details of the interleaver implementation, see LTE Turbo Encoder.

The odd half-iterations compute the likelihood ratio from uninterleaved bits (P1, S, and deinterleaved
results of P2 decoding). The even half-iterations compute the likelihood ratio from the interleaved bits
(P2 and interleaved results of P1 and S decoding).

The decoder block uses the BCJR algorithm to find the likelihood ratio of a particular bit [2].

L(uk) ≜ log
P(uk = + 1 | y)
P(uk = + 1 | y)

          = log
∑
s+

p(sk− 1 = s′, sk = s, y)/p(y)

∑
s−

p(sk− 1 = s′, sk = s, y)/p(y)

The probabilities can also be represented in terms of current and future states:

p(s′, s, y) = αk− 1(s′) ⋅ γk(s′, s) ⋅ βk(s)
αk− 1(s′) = P(s′, y < k)
γk(s′, s) = P(yk, s | s′)
βk(s) = P(y < k| s)

The α probability represents the previous state, β represents the current state probability, and ɣ
represents the next state. The algorithm calculates ɣ from the input values. The α and β probabilities
are calculated using forward and backward recursion over the possible states of the trellis, and also
depend on ɣ. All calculations are done in the log domain.
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αk = αk− 1(s′) ⋅ γk(s′, s)         
βk− 1(s′) = βk(s) ⋅ γk(s′, s)    

The initial conditions for α and β are:

α0(s) =
1, s = 0
0, s ≠ 0

β0(s) =
1, s = 0
0, s ≠ 0

This diagram shows the half-iteration decoder and interleaver architecture. The initial likelihood is
set to zero.

In a normal BCJR architecture, the algorithm cannot compute β until the entire frame is in memory. It
must perform a full-frame forward trace and then a full-frame backward trace, which means the
latency of one half-iteration is two frame lengths. The required memory is
BlockSize*NumStates*DataWidth. In this case, NumStates is eight, from LTE standard TS 36.212
[1].

However, this decoder implementation uses a sliding window to reduce the required memory and the
latency of the algorithm [3]. The window size is 32 samples, which is five times the trellis constraint
length of 7. The latency of one half-iteration is:
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ceil BlockSize
WinSize + 2 × WinSize + PipeDelay

The required memory with sliding window is 2*32*NumStates*DataWidth. This figure shows how the
β calculation traces and decodes one window at a time, alternating input between the A and B
calculation blocks.

Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
Xilinx Zynq-7000 ZC706 board. This implementation is for a fixed block size of 6144, six decode
iterations, and sfix5_en2 input data samples. The design achieves 306.6 MHz clock frequency.

Resource Uses
LUT 4771
LUTRAM 212
FFS 4691
Block RAM (16K) 7

The RAM size grows with block size. When you enable the block size port, RAM sufficient for the
largest block size is used.

References
[1] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

[2] Bahl, L. R., J. Cocke, F. Jelinek, and J. Raviv. "Optimal Decoding of Linear Codes for Minimizing
Symbol Error Rate." IEEE Transactions on Information Theory. Vol 1T-20, March 1974, pp.
284–287.

[3] Viterbi, Andrew J. "An Intuitive Justification and a Simplified Implementation of the MAP Decoder
for Convolutional Codes." IEEE Journal on Selected Areas in Communications. Vol. 16, No. 2,
February 1998.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem or an Enabled
Synchronous Subsystem.

See Also
Blocks
LTE Turbo Encoder

Functions
lteTurboEncode | lteTurboDecode

Introduced in R2017b
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LTE OFDM Modulator
Modulate LTE resource grid and return time-domain OFDM samples
Library: Wireless HDL Toolbox / Modulation

Description
The LTE OFDM Modulator block implements an algorithm for modulating LTE resource grid samples
specified by LTE standard TS 36.212 [1]. The block uses an orthogonal frequency-division
multiplexing (OFDM) mechanism in its operation and converts the resource grid input samples to an
equivalent time-domain signal output. OFDM is effective for communication over channels with high-
frequency selectivity and is widely used in the development of the LTE downlink transmitter. The
block implements a windowing feature to reduce the spectral regrowth, or adjacent channel leakage
ratio (ACLR), of an OFDM signal.

The block provides an interface and architecture suitable for HDL code generation and hardware
deployment.

You can select the number of downlink resource blocks (NDLRB) and choose either normal or
extended cyclic prefix (CP), as described in the LTE standard. The latency from the first input sample
to the first output sample depends on your selection of the NDLRB.

NDLRB Latency
6 6268
15 6376
25 6496
50 6796
75 7096
100 7396

Ports
Input

data — Input data
scalar

Input data, specified as a signed real or complex number. double and single data types are
supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid input data
scalar
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Control signal that indicates if the data from the data input port is valid. When this value is 1 (true),
the block captures the value on the data input port. When this value is 0 (false), the block ignores
the values on the data input port.
Data Types: Boolean

NDLRB — Number of downlink resource blocks
6 | 15 | 25 | 50 | 75 | 100

Number of downlink resource blocks, specified as 6, 15, 25, 50, 75, or 100. The NDLRB must be one
of these six values specified by LTE standard TS 36.212 [1]. The block samples this port at the start of
each subframe and ignores any changes within a subframe.

Dependencies

To enable this port, set the NDLRB source parameter to Input port.
Data Types: uint8 | uint16 | uint32 | fixdt(0,K,0), K >= 7 | single | double

cyclicPrefixType — Type of CP
scalar

Type of CP, specified as a Boolean scalar. When this value is 0 (false), the block selects normal CP.
When this value is 1 (true), the block selects extended CP. The block samples this port at the start of
each subframe and ignores any changes within a subframe.

Dependencies

To enable this port, set the Cyclic prefix source parameter to Input port.
Data Types: Boolean

reset — Clears internal states
scalar

Clears internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the
current calculation and clears all internal states. When this value is 0 (false) and the valid input
value is 1 (true), the block begins a new subframe.

Dependencies

To enable this port, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — Output data
scalar

Output data, returned as a signed real or complex number. The data type is the same as the data type
of the data input port. When you clear the Divide butterfly outputs by two parameter, the word
length increases by 1 bit per stage in inverse fast fourier transform (IFFT).
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid output data
scalar
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Control signal that indicates if the data from the data output port is valid. The block sets this value to
1 (true) when the modulated samples are available on the data output port.
Data Types: Boolean

ready — Indicates block is ready
scalar

Control signal that indicates that the block is ready for new input data. When this value is 1 (true),
the block accepts input data in the next time step. When this value is 0 (false), the block ignores
input data in the next time step.
Data Types: Boolean

Parameters
Main

NDLRB source — Source of NDLRB
Property (default) | Input port

You can set the NDLRB by selecting a parameter value or using an input port. To enable the NDLRB
parameter, select Property. To enable the NDLRB port, select Input port.

NDLRB — Number of downlink resource blocks
6 (default) | 15 | 25 | 50 | 75 | 100

Number of downlink resource blocks, specified as 6, 15, 25, 50, 75, or 100. NDLRB must be one of
these six values specified by LTE standard TS 36.212 [1].

Dependencies

To enable this parameter, set the NDLRB source parameter to Property.

Cyclic prefix source — Source of cyclic prefix
Property (default) | Input port

You can set the cyclic prefix by selecting a parameter value or using an input port. To enable the
Cyclic prefix type parameter, select Property. To enable the cyclicPrefixType port, select Input
port.

Cyclic prefix type — Type of cyclic prefix
Normal (default) | Extended

Type of cyclic prefix, specified as Normal or Extended.

Dependencies

To enable this parameter, set the Cyclic prefix source parameter to Property.

Windowing — Spectral growth reduction
off (default) | on

Select this parameter to perform a windowing operation that reduces spectral growth and uses the
NDRLB window length specified by the Window length per NDLRB parameter. Clear this
parameter to disable windowing operation.
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Window length per NDLRB — NDRLB window length
[4, 6, 4, 6, 8, 8] (default) | row vector of NDLRB window lengths

NDRLB window length, specified as a row vector of nonnegative integers whose elements correspond
to the window lengths for NDRLB 6, 15, 25, 50, 75, and 100 respectively. By default, the window
lengths for NDRLB 6, 15, 25, 50, 75, and 100 are 4, 6, 4, 6, 8, and 8, respectively. The window length
for each NDLRB can range from 0 to the minimum CP value.

• For normal CP, the minimum CP values for NDRLB 6, 15, 25, 50, 75, and 100 are 9, 18, 36, 72,
144, and 144, respectively.

• For extended CP, the minimum CP values for NDRLB 6, 15, 25, 50, 75, and 100 are 32, 64, 128,
256, 512, and 512, respectively.

Dependencies

To enable this parameter, select the Windowing parameter.

Enable reset input port — Reset signal
off (default) | on

Select this parameter to enable the reset port on the block icon.

Output data sample rate — Output sample rate
Use maximum output data sample rate (default) | Match output data sample rate to
NDLRB

This parameter specifies the type of sample rate for the block to select for the output data.

• To provide an output data sample rate of 30.72 MHz, select Use maximum output data
sample rate.

• To provide an output data sample rate based on the NDLRB parameter, select Match output
data sample rate to NDLRB. The output sampling rates for NDLRB 6, 15, 25, 50, 75, and
100 are 1.92 MHz, 3.84 MHz, 7.68 MHz, 15.36 MHz, 30.72 MHz, and 30.72 MHz, respectively.

For more information, see “Base Rate Controller” on page 1-72.

IFFT Block Parameters

Divide butterfly outputs by two — Bit-width control
on (default) | off

When you select this parameter, the IFFT block in the LTE OFDM Modulator block implements an
overall 1/N scale factor by dividing the output of each butterfly multiplication by two. This adjustment
keeps the output of the IFFT block in the same amplitude range as its input. If you disable this
parameter, the block avoids overflow by increasing the word length by 1 bit after each butterfly
multiplication.

Rounding Method — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter specifies the type of rounding mode for internal fixed-point calculations. Rounding
applies to twiddle-factor multiplication and scaling operations. For more information about rounding
modes, see Rounding Modes (DSP System Toolbox).
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When the input is any integer or fixed-point data type, the IFFT algorithm uses fixed-point arithmetic
for internal calculations. This parameter does not apply when the input data is of data type single
or double.

Algorithms
The LTE OFDM Modulator block operation sequence is carried over using these blocks: OFDM
Symbol Formation, IFFT, FFT Shift, CP Addition, Windowing, and Base Rate Controller. The OFDM
Symbol Formation block maps the resource grid input to active subcarrier bins to form 2048
subcarriers. The IFFT block converts the frequency-domain signal to time-domain signal, and the FFT
Shift block performs time-domain FFT shift. The CP Addition block adds CP-length samples from the
end of the symbol to its prefix. The Windowing block performs windowing and overlapping of adjacent
OFDM symbols of complex symbols in the resource array. The Base Rate Controller block defines the
sample rate of the output data. The parameters shown in the following figure configure the behavior
of the block.

OFDM Symbol Formation

An OFDM Symbol Formation subsystem calculates the number of active and inactive subcarriers and
the number of CP samples. It generates a ready signal and subcarriers (active, inactive, and DC) for
each OFDM symbol as per LTE standard.

The OFDM Symbol Formation subsystem calculates the number of active subcarriers based on the
NDLRB value.

Number of active subcarriers = 12 x NDLRB

The number of inactive subcarriers is a difference of IFFT size and the number of active subcarriers.
To save hardware resources by avoiding multiple IFFTs, the IFFT size is fixed to 2048.

Number of inactive subcarriers = 2048 — Number of active carriers

The block outputs a signal from ready port to indicate when the block is ready to accept input data.
This signal depends on the valid input signal, NDLRB, CP type, and OFDM symbol number. The
ready output signal is generated for one time step, and the valid input signal is checked for next time
step. The block accepts the input data and the ready output signal remains high (1) until the OFDM
symbol data is received. If the valid input is low (0), the ready signal extends until the valid input
signal receives high (1). After receiving active subcarriers, the block sets the ready output signal to
low (0) for a time period equal to the sum of the number of inactive subcarriers and the number of CP
samples.
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These figures show the timing diagrams of the ready output signal for NDLRB values 25 and 100,
respectively.

IFFT

The IFFT block converts a frequency-domain signal to a time-domain signal. LTE supports six
standard bandwidth options: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz. These
bandwidth options require an FFT length of 128, 256, 512, 1024, and 2048, respectively. The block
uses 2048 FFT length, which corresponds to the maximum bandwidth of LTE, that is 20-MHz. The
FFT length of IFFT is configured to the highest FFT size to generate single hardware, which supports
all LTE bandwidth options.

The Divide butterfly outputs by two parameter controls if the FFT implements an overall 1/N scale
factor by dividing the output of each butterfly multiplication by two. This adjustment keeps the output
of the IFFT in the same amplitude range as its input. When the Divide butterfly outputs by two
parameter is cleared, the block avoids overflow by increasing the word length by 1 bit after each
butterfly multiplication.

FFT Shift

Conventionally, transceivers perform an FFT shift in the frequency domain. However, this method
requires memory and introduces latency related to the size of the FFT. Instead, a transceiver can
execute the same operation in the time domain using the frequency shifting property of Fourier
transforms. Shifting a function in one domain corresponds to a multiplication by a complex
exponential function in the other domain. To reduce hardware resources and latency, this block
performs the FFT shift by multiplying the time-domain samples by a complex exponential function.

These equations describe an FFT shift. The equation for an N-point FFT is

X(k) = F[x(n)] = ∑
n = 0

N − 1
x(n)e−

j2πnk
N
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For an FFT shift of N/2 carriers in either direction, substitute k = k− N
2 , resulting in

X(k− N
2 ) = ∑

n = 0

N − 1
x(n)e−

j2πn(k− N
2 )

N

This equation simplifies to

X(k− N
2 ) = ∑

n = 0

N − 1
e jπnx(n)e−

j2πnk
N

Since ∑
n = 0

N − 1
x(n)e−

j2πnk
N  is equivalent to F[x(n)], and e jπ = − 1, this equation simplifies to

X(k− N
2 ) = F[(− 1)nx(n)]

The final equation shows that an FFT shift in the time domain simplifies to multiplication by (-1)n.
Therefore, the block implements the FFT shift by multiplying the time-domain samples by either +1
or –1.

CP Addition

Cyclic prefix addition is a process of adding the last samples of an OFDM symbol as a prefix to each
OFDM symbol. CP addition for an OFDM symbol with Nfft samples and CP samples NCP is shown in
this figure.

The LTE OFDM Modulator block uses FFT size of 2048 for all NDLRB resources to avoid multiple
IFFTs. The block uses CP values corresponding to NDLRB 100.

The Cyclic prefix type parameter controls whether the block expects a normal or an extended CP.
The block requires the input to maintain a sample rate of 30.72 MHz. It assumes that each symbol is
2048 samples plus the cyclic prefix size associated with the rate. When using a normal CP, the prefix
of the first symbol in each slot has 160 samples, while each subsequent symbol contains a prefix of
144 samples. When using an extended CP, all symbols contain 512 samples. For more information
about the cyclic prefix length (in samples) of each OFDM symbol in a subframe, see the
lteOFDMModulate function.
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Windowing

Windowing reduces the spectral regrowth, or adjacent channel leakage ratio (ACLR), of an OFDM
signal. The feature is optional. To enable windowing, select the Windowing parameter.

For more information about windowing, see the lteOFDMModulate function.

Base Rate Controller

This block generates the output data at a sample rate of 30.72 MHz by using the maximum output
data sample rate or output data sample rate with the specified NDLRB.

This figure shows the output data when you set the Output data sample rate parameter to Use
maximum output data sample rate.

This figure shows the output data when you set the Output data sample rate parameter to Match
output data sample rate to NDLRB parameter. For NDLRB value 25, the output sample rate is
7.68 MHz, and the block returns valid output data at every fourth cycle.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. The
input data type used for generating HDL code is fixdt(1,16,14).

This table shows the resource and performance data synthesis results when using the block with
default configuration. The generated HDL targeted to Xilinx Zynq XC7Z045I-FFG900-2L FPGA. The
design achieves a clock frequency of 247 MHz.

Resource Number Used
LUTs 8050
Registers 9682
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Resource Number Used
DSPs 22
Block RAM 22
F7 Muxes 0
F8 Muxes 0
RAMB36/FIFO 12
RAMB18 20

References
[1] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.
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See Also
Blocks
LTE OFDM Demodulator

Functions
lteOFDMModulate | lteOFDMDemodulate

Introduced in R2019a
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LTE Symbol Demodulator
Demodulate complex LTE data symbols to data bits or LLR values
Library: Wireless HDL Toolbox / Modulation

Description
The LTE Symbol Demodulator block demodulates complex data symbols to data bits or log likelihood
ratios (LLR) values based on the modulation types supported by LTE standard TS 36.211 [1]. The
block provides an architecture suitable for HDL code generation and hardware deployment. You can
use this block in the development of an LTE receiver.

The block accepts data symbols, along with a valid signal, and outputs demodulated bits or LLR
values with valid and ready signals. The number of demodulated bits or LLR values for a given symbol
depends on the modulation type, as shown in this table.

Modulation Type Number of Bits per Symbol (NBPS)
BPSK 1
QPSK 2
16-QAM 4
64-QAM 6
256-QAM 8

The ready output port indicates when the block can accept an input data sample. You can use ready
output port to control the upstream data coming to the block.

Ports
Input

data — Input data symbols
complex scalar

Input data symbols, specified as a complex scalar. The block performs demodulation assuming the
input constellation power normalization is in accordance with LTE standard TS 36.211, Section 7.1
[1]. The normalization values are based on the modulation type.

• 1/√2 for BPSK and QPSK
• 1/√10 for 16-QAM
• 1/√42 for 64-QAM
• 1/√170 for 256-QAM

Example: For BPSK modulation, the input values can be [0.707 +0.707i; -0.707 -0.707i]
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double and single data types are supported for simulation, but not for HDL code generation.

For HDL code generation, the input data type must be signed fixed point and the maximum
input word length the block supports is 32 bits.
Data Types: single | double | signed fixed point

valid — Valid input data indication
scalar

Control signal that indicates if the input data is valid. When this value is 1 (true), the block accepts
the values on the data input port. When this value is 0 (false), the block ignores the values on the
data input port.
Data Types: Boolean

modSel — Modulation selection
integer from 0 to 4

Select the modulation type by specifying its corresponding value shown in this table. Valid modSel
values are from 0 to 4. Each value represents a specific modulation type, as shown in this table.

Value Modulation Type
0 BPSK
1 QPSK
2 16-QAM
3 64-QAM
4 256-QAM

If you specify a value other than one listed in this table, the block displays a warning message and
applies QPSK modulation.

For HDL code generation, specify this value in fixdt(0,3,0) format. double and single data
types are supported for simulation but not for HDL code generation.

Dependencies

To enable this port, set the Modulation source parameter to Input port.
Data Types: single | double | signed fixed point

Output

data — Output demodulated data bits or LLR values
scalar

Output demodulated data bits or LLR values, returned as a scalar.

• When you set the Decision type parameter to Soft, the block outputs demodulated LLR values.
A positive LLR output value is considered as 1 and a negative LLR output value is considered as 0.
The magnitude of the output gives a piecewise linear approximation to the LLR of the
demodulated bits. The algorithm used for the LLR approximation is described in [1]. The returned
LLR values for the input signal located on these constellation points lie within these magnitudes.
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• 1 for BPSK
• 1/√2 for QPSK
• [1 3]/√10 for 16-QAM
• [1 3 5 7]/√42 for 64-QAM
• [1 3 5 7 9 11 13 15]/√170 for 256-QAM

The output word length increases by 2 bits for inputs with data type signed fixed point. For
input with data types double or single, the output data type is the same as the input data type.

• When you set the Decision type parameter to Hard, the block results in the output containing the
bit sequences corresponding to the closest constellation points to the input. The data type of this
output is Boolean.

Data Types: single | double | signed fixed point | Boolean

valid — Valid output data indication
scalar

Control signal that indicates if data from the data output port is valid. When this value is 1 (true), the
block returns valid data on the data output port. When this value is 0 (false), the values on the data
output port are not valid.
Data Types: Boolean

ready — Block ready indicator
scalar

Control signal that indicates when the block is ready to accept new input data. When this value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores the input data in the next time step.

The ready signal remains 0 (false) until the block outputs data of the corresponding input data
symbol. The number of clock cycles the ready signal remains 0 (false) depends on the selected
modulation type. If the selected modulation type is 16-QAM, the ready signal remains 0 (false) for 3
clock cycles, calculated as NBPS – 1 and then it changes to 1 (true) indicating that the block is ready
to accept data in the next time step.
Data Types: Boolean

Parameters
Modulation source — Source for modulation type
Property (default) | Input port

To specify the modulation type by using the Modulation parameter, select Property. To specify the
modulation type from the modSel port during run time, select Input port.

Modulation — Modulation type
BPSK (default) | QPSK | 16-QAM | 64-QAM | 256-QAM

Select the modulation type.
Dependencies

To enable this parameter, set the Modulation source parameter to Property.
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Decision type — Type of demapping
Soft (default) | Hard

Select the demapping type.

• Soft — Demap data symbols to LLR values. This LLR value for each bit indicates how likely the
bit is 1 or 0.

• Hard — Demap data symbols to bits 1 or 0.

Rounding Method — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter specifies the type of rounding mode for internal fixed-point calculations. For more
information about rounding modes, see Rounding Modes (DSP System Toolbox). This parameter does
not apply when the input is of data type double or single.

Algorithms
The block outputs data in the form of bits or LLR values based on the demapping type you specify for
the Decision type parameter: Hard or Soft respectively. For this demapping, the block implements
simplified approximate LLR algorithm [2].

Latency

The block captures output bits at valid cycles. The latency of the block is seven clock cycles.

This figure shows a sample output and latency of the block when you set the Modulation parameter
to BPSK and the Decision type parameter to Soft.

This figure shows a sample output and latency of the block when you specify the modSel values as 0
(BPSK), 1 (QPSK), 2 (16-QAM), 3 (64-QAM), and 4 (256-QAM) and set the Decision type parameter
to Hard.

Performance

This table shows the resource and performance data synthesis results of the block for soft-decision
and hard-decision demapping types when you provide an input data type of fixdt(1,16,14). The
modulation type is applied using the modSel input port. The generated HDL is targeted to a Xilinx
Zynq- 7000 ZC706 evaluation board.
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The design achieves a clock frequency of 475.9 MHz for soft-decision and 454.7 MHz for hard-
decision.

Resource Utilization Soft Decision Hard Decision
Slice LUTs 234 188
Slice Registers 276 225
DSP 1 0

References
[1] 3GPP TS 36.211. "Physical channels and modulation." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

[2] F. Tosato and P. Bisaglia. "Simplified soft-output de-mapper for binary interleaved coded OFDM
with application to HIPERLAN/2." ICC 2002, Vol. 2, pp. 664–668.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

This block does not have any HDL Block Properties.

See Also
Blocks
LTE Symbol Modulator | NR Symbol Demodulator

Functions
lteSymbolDemodulate

Introduced in R2019b
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LTE Symbol Modulator
Modulate data bits to complex LTE data symbols
Library: Wireless HDL Toolbox / Modulation

Description
The LTE Symbol Modulator block maps a group of data bits to complex data symbols by using the
modulation types supported by LTE standard TS 36.211 [1]. The block provides an architecture
suitable for HDL code generation and hardware deployment. You can use this block in the
development of an LTE transmitter.

The block accepts 1-bit of data at a time, along with control signals, and outputs a modulated
complex symbol with a valid signal. Each complex symbol comprises a standard number of bits based
on the modulation type, as shown in this table. If you provide a nonmultiple of modulation-order bits
as an input, the block ignores the output symbol with insufficient or excessive bits. The modulation
order is the number of bits per symbol.

Modulation Type Modulation Order - Number of Bits Per
Symbol

BPSK 1
QPSK 2
16-QAM 4
64-QAM 6
256-QAM 8

Ports
Input

data — Input data bits
scalar

Input data bits, specified as a scalar. The block accepts Boolean or ufix1 data bits.
Data Types: Boolean | fixdt(0,1,0)

valid — Indicate valid input data
scalar

Control signal that indicates if the input data is valid. When this value is 1 (true), the block accepts
the values on the data input port. When this value is 0 (false), the block ignores the values on the
data input port.
Data Types: Boolean
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modSel — Modulation selection
integer

Select the modulation type by specifying its corresponding value shown in this table.

The modSel values are from 0 to 4. Each value represents a specific modulation type.

Value Modulation Type
0 BPSK
1 QPSK
2 16-QAM
3 64-QAM
4 256-QAM

If you specify a value other than one listed in this table, the block displays a warning message and:

• Applies QPSK modulation when load is 1 (true).
• Continues with the current modulation when load is 0 (false).

For HDL code generation, specify this value in fixdt(0,3,0) format.
Dependencies

To enable this port, set the Modulation source parameter to Input port.
Data Types: fixdt(0,3,0) | double | single

load — Modulation control
scalar

Control signal to sample modulation.

When this value is 1 (true), the block applies the modulation based on the modSel value. When this
value is 0 (false), the block ignores any changes in the modSel value and continues with the current
modulation until load changes to 1 (true).

If the load value changes to 1 (true) during the block operation, the block resynchronizes and
restarts modulation using the current value of modSel. This restart occurs whether or not the
modSel value has changed. For example, if the block is operating in 256-QAM mode and the load
value changes to 1 (true) after four of the eight required input bits are sent into the block, the block
discards those first four bits and restarts its operation from the fifth bit.

If you do not apply the load value as 1 (true) at the start of block operation, by default, the block
operates with QPSK modulation.
Dependencies

To enable this port, set the Modulation source parameter to Input port.
Data Types: Boolean

Output

data — Modulated complex data symbols
scalar
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Modulated complex data symbols, returned as a scalar.
Data Types: single | double | fixdt(1,wordlength,wordlength-2)

valid — Valid output data indication
scalar

Control signal that indicates if data from the data output port is valid. When this value is 1 (true), the
block returns valid data on the data output port. When this value is 0 (false), the block ignores values
on the data output port.
Data Types: Boolean

Parameters
Main

Modulation source — Source for modulation type
Property (default) | Input port

To specify the modulation type by using the Modulation parameter, select Property. To specify the
modulation type from the modSel port during run time, select Input port.

Modulation — Modulation type
BPSK (default) | QPSK | 16-QAM | 64-QAM | 256-QAM

Select the modulation type.

Dependencies

To enable this parameter, set the Modulation source parameter to Property.

Data Types

Output data type — Output data type selection
double (default) | single | Custom

Specify the data type for the output data.

double and single data types are supported for simulation.

For simulation and HDL code generation, set this value to Custom.

Word length — Output word length
16 (default) | integer in the range [3, 32]

Specify the output word length. This value must be an integer in the range [3, 32].

Dependencies

To enable this parameter, set the Output data type parameter to Custom.
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Algorithms
Output Waveforms

These figures show sample outputs of the block when operated with a fixed modulation type applied
using the Modulation parameter and when operated with varied modulation types applied using the
modSel input port. The latency of the block is equal to the sum of three clock cycles and the number
of bits per symbol.

The block captures the output symbols at valid cycles.

This figure shows a sample output when you select BPSK modulation by using the Modulation
parameter. In this sample output, the latency of the block is 4.

This figure shows a sample output when you select BPSK, QPSK, 16-QAM, 64-QAM, and 256-QAM
modulations by using the modSel input port. The latency of the block varies with the modulation
selection.

Performance

This table shows the resource and performance data synthesis results of the block when using the
modSel input port as the modulation source and an output word length of 16. The generated HDL is
targeted to a Xilinx Zynq- 7000 ZC706 evaluation board. The design achieves a clock frequency of
872 MHz.

Resource Number Used
Slice LUTs 61
Slice Registers 67
DSP48 0

References
[1] 3GPP TS 36.211. "Physical channels and modulation." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

This block does not have any HDL Block Properties.

See Also
Blocks
LTE Symbol Demodulator | NR Symbol Modulator

Functions
lteSymbolModulate

Introduced in R2019a
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NR Symbol Demodulator
Demodulate complex NR data symbols to data bits or LLR values
Library: Wireless HDL Toolbox / Modulation

Description
The NR Symbol Demodulator block demodulates complex data symbols to data bits or log likelihood
ratios (LLR) values based on the modulation types supported by 5G New Radio (NR) standard TS
38.211 [1]. The block provides an architecture suitable for HDL code generation and hardware
deployment. You can use this block in the development of an NR receiver.

The block accepts data symbols, along with a valid signal, and outputs demodulated bits or LLR
values with valid and ready signals. The number of demodulated bits or LLR values for a given symbol
depends on the modulation type, as shown in this table.

Modulation Type Number of Bits per Symbol (NBPS)
BPSK 1
QPSK 2
16-QAM 4
64-QAM 6
256-QAM 8
pi/2-BPSK 1

The ready output port indicates when the block can accept an input data sample. You can use ready
output port to control the upstream data coming to the block.

Ports
Input

data — Input data symbols
complex scalar

Input data symbols, specified as a complex scalar. The block performs demodulation assuming the
input constellation power normalization is in accordance with NR standard TS 38.211, Section 5.1
[1]. The normalization values are based on the modulation type.

• 1/√2 for BPSK, QPSK, and pi/2-BPSK
• 1/√10 for 16-QAM
• 1/√42 for 64-QAM
• 1/√170 for 256-QAM
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Example: For BPSK modulation, the input values can be [0.707 +0.707i; -0.707 -0.707i]

double and single data types are supported for simulation, but not for HDL code generation.

For HDL code generation, the input data type must be signed fixed point and the maximum
input word length the block supports is 32 bits.
Data Types: single | double | signed fixed point

valid — Indicate valid input data
scalar

Control signal that indicates if the input data is valid. When this value is 1 (true), the block accepts
the values on the data input port. When this value is 0 (false), the block ignores the values on the
data input port.
Data Types: Boolean

modSel — Modulation selection
integer from 0 to 5

Select the modulation type by specifying its corresponding value shown in this table. Valid modSel
values are from 0 to 5. Each value represents a specific modulation type, as shown in this table.

Value Modulation Type
0 BPSK
1 QPSK
2 16-QAM
3 64-QAM
4 256-QAM
5 pi/2-BPSK

If you specify a value other than one listed in this table, the block displays a warning message and
applies QPSK modulation.

double and single data types are supported for simulation, but not for HDL code generation.

For HDL code generation, specify this value in fixdt(0,3,0) format.

Dependencies

To enable this port, set the Modulation source parameter to Input port.
Data Types: single | double | signed fixed point

Output

data — Demodulated data bits or LLR values
scalar

Output demodulated data bits or LLR values, returned as a scalar.

• When you set the Decision type parameter to Soft, the block outputs demodulated LLR values.
A positive LLR output value is considered as 0 and a negative LLR output value is considered as 1.
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The magnitude of the output gives a piecewise linear approximation to the LLR of the
demodulated bits. The algorithm used for the LLR approximation is described in [1]. The block
scales the returned LLRs with a respective scaling factor based on the modulation type as shown
in this table.

Modulation Type Scaling Factor
BPSK 4/√2
QPSK 4/√2
16-QAM [4 8]/√10
64-QAM [4 8 12 16]/√42
256-QAM [4 8 12 16 20 24 28 32]/√170
pi/2-BPSK 4/√2

The output word length increases by 3 bits for inputs with data type signed fixed point. For
input with data types double or single, the output data type is the same as the input data type.

• When you set the Decision type parameter to Hard, the block results in the output containing the
bit sequences corresponding to the closest constellation points to the input. The data type of this
output is Boolean.

Data Types: single | double | signed fixed point | Boolean

valid — Valid output data indication
scalar

Control signal that indicates if data from the data output port is valid. When this value is 1 (true), the
block returns valid data on the data output port. When this value is 0 (false), the values on the data
output port are not valid.
Data Types: Boolean

ready — Indicates block is ready
scalar

Control signal that indicates when the block is ready to accept new input data. When this value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores the input data in the next time step.

The ready signal remains 0 (false) until the block outputs data of the corresponding input data
symbol. The number of clock cycles the ready signal remains 0 (false) depends on the selected
modulation type. If the selected modulation type is 16-QAM, the ready signal remains 0 (false) for 3
clock cycles, calculated as NBPS – 1 and then it changes to 1 (true) indicating that the block is ready
to accept data in the next time step.
Data Types: Boolean

Parameters
Modulation source — Source for modulation type
Property (default) | Input port

To specify the modulation type by using the Modulation parameter, select Property. To specify the
modulation type from the modSel port during run time, select Input port.
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Modulation — Modulation type
BPSK (default) | QPSK | 16-QAM | 64-QAM | 256-QAM | pi/2-BPSK

Select the modulation type.
Dependencies

To enable this parameter, set the Modulation source parameter to Property.

Decision type — Type of demapping
Soft (default) | Hard

Select the demapping type.

• Soft — Demap data symbols to LLR values. This LLR value for each bit indicates how likely the
bit is 1 or 0.

• Hard — Demap data symbols to bits 1 or 0.

Rounding Method — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter specifies the type of rounding mode for internal fixed-point calculations. For more
information about rounding modes, see Rounding Modes (DSP System Toolbox). This parameter does
not apply when the input is of data type double or single.

Algorithms
The block outputs data in the form of bits or LLR values based on the demapping type you specify for
the Decision type parameter: Hard or Soft respectively. For this demapping, the block implements
simplified approximate LLR algorithm [2].

Latency

The block captures output bits at valid cycles. The latency of the block is 13 clock cycles.

This figure shows a sample output and latency of the block when you set the Modulation parameter
to BPSK and the Decision type parameter to Soft.

This figure shows a sample output and latency of the block when you specify the modSel values as 0
(BPSK), 1 (QPSK), 2 (16-QAM), 3 (64-QAM), 4 (256-QAM), and 5 (pi/2-BPSK) and set the Decision
type parameter to Hard.
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Performance

This table shows the resource and performance data synthesis results of the block for soft-decision
and hard-decision demapping types when you provide an input data type of fixdt(1,16,14). The
modulation type is applied using the modSel input port. The generated HDL is targeted to a Xilinx
Zynq- 7000 ZC706 evaluation board.

The design achieves a clock frequency of 443.26 MHz for soft-decision and 420.34 MHz for hard-
decision.

Resource Utilization Soft Decision Hard Decision
Slice LUTs 436 422
Slice Registers 336 337
DSP 1 0

References
[1] 3GPP TS 38.211. "NR; Physical channels and modulation." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] F. Tosato and P. Bisaglia. "Simplified soft-output de-mapper for binary interleaved coded OFDM
with application to HIPERLAN/2." ICC 2002, Vol. 2, pp. 664–668.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

This block does not have any HDL Block Properties.

See Also
Blocks
LTE Symbol Demodulator | NR Symbol Modulator

Functions
nrSymbolDemodulate

Introduced in R2019b
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NR Symbol Modulator
Modulate data bits to complex NR data symbols
Library: Wireless HDL Toolbox / Modulation

Description
The NR Symbol Modulator block maps a group of data bits to complex data symbols by using the
modulation types supported by NR standard TS 38.211 [1]. The block provides an architecture
suitable for HDL code generation and hardware deployment.

The block accepts 1-bit of data at a time, along with control signals, and outputs a modulated
complex symbol with a valid signal. Each complex symbol comprises a standard number of bits based
on the modulation type, as shown in this following table. If you provide a nonmultiple of modulation-
order bits as an input, the block ignores the output symbol with insufficient or excessive bits. The
modulation order is the number of bits per symbol.

Modulation Type Modulation Order - Number of Bits per
Symbol

BPSK 1
QPSK 2
16-QAM 4
64-QAM 6
256-QAM 8
pi/2-BPSK 1

Ports
Input

data — Input data bits
scalar

Input data bits, specified as a scalar. The block accepts Boolean or ufix1 data bits.
Data Types: Boolean | fixdt(0,1,0)

valid — Indicate valid input data
scalar

Control signal that indicates if the input data is valid. When this value is 1 (true), the block accepts
the values on the data input port. When this value is 0 (false), the block ignores the values on the
data input port.
Data Types: Boolean

1 Blocks

1-90



modSel — Modulation selection
integer

Select the modulation type by specifying its corresponding value shown in this table.

The modSel values are from 0 to 5. Each value represents a specific modulation type.

Value Modulation Type
0 BPSK
1 QPSK
2 16-QAM
3 64-QAM
4 256-QAM
5 pi/2-BPSK

If you specify a value other than one listed in this table, the block displays a warning message and:

• Applies QPSK modulation when load is 1 (true).
• Continues with the current modulation when load is 0 (false).

For HDL code generation, specify this value in fixdt(0,3,0) format.

Dependencies

To enable this port, set the Modulation source parameter to Input port.
Data Types: fixdt(0,3,0) | double | single

load — Modulation control
scalar

Control signal to sample modulation.

When this value is 1 (true), the block applies the modulation based on the modSel value. When this
value is 0 (false), the block ignores any changes in the modSel value and continues with the current
modulation until load changes to 1 (true).

If the load value changes to 1 (true) during the block operation, the block resynchronizes and
restarts modulation using the current value of modSel. This restart occurs whether or not the
modSel value has changed. For example, if the block is operating in 256-QAM mode and the load
value changes to 1 (true) after four of the eight required input bits are sent into the block, the block
discards those first four bits and restarts its operation from the fifth bit.

If you do not apply the load value as 1 (true) at the start of block operation, by default, the block
operates with QPSK modulation.

Dependencies

To enable this port, set the Modulation source parameter to Input port.
Data Types: Boolean
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Output

data — Modulated complex data symbols
scalar

Modulated complex data symbols, returned as a scalar.
Data Types: single | double | fixdt(1,wordlength,wordlength-2)

valid — Valid output data indication
scalar

Control signal that indicates if data from the data output port is valid. When this value is 1 (true), the
block returns valid data on the data output port. When this value is 0 (false), the block ignores values
on the data output port.
Data Types: Boolean

Parameters
Main

Modulation source — Source for modulation type
Property (default) | Input port

To specify the modulation type by using the Modulation parameter, select Property. To specify the
modulation type from the modSel port during run time, select Input port.

Modulation — Modulation type
BPSK (default) | QPSK | 16-QAM | 64-QAM | 256-QAM | pi/2-BPSK

Select the modulation type.

Dependencies

To enable this parameter, set the Modulation source parameter to Property.

Data Types

Output data type — Output data type selection
double (default) | single | Custom

Specify the data type for the output data.

double and single data types are supported for simulation.

For simulation and HDL code generation, set this value to Custom.

Word length — Output word length
16 (default) | integer in the range [3, 32]

Specify the output word length. This value must be an integer in the range [3, 32].

Dependencies

To enable this parameter, set the Output data type parameter to Custom.

1 Blocks

1-92



Algorithms
Latency

These figures show sample outputs of the block when operated with a fixed modulation type applied
using the Modulation parameter and when operated with varied modulation types applied using the
modSel input port. The latency of the block is equal to the sum of three clock cycles and the number
of bits per symbol.

The block captures the output symbols at valid cycles.

This figure shows a sample output when you select BPSK modulation by using the Modulation
parameter. In this sample output, the latency of the block is 4.

This figure shows a sample output when you select BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM, and
pi/2-BPSK modulations by using the modSel input port. The latency of the block varies with the
modulation selection.

Performance

This table shows the resource and performance data synthesis results of the block when using the
modSel input port as the modulation source and an output word length of 16. The generated HDL is
targeted to a Xilinx Zynq- 7000 ZC706 evaluation board. The design achieves a clock frequency of
872 MHz.

Resource Number Used
Slice LUTs 61
Slice Registers 67
DSP48 0

References
[1] 3GPP TS 38.211. "NR; Physical channels and modulation." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network. URL: https://www.3gpp.org.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

This block does not have any HDL Block Properties.

See Also
Blocks
NR Symbol Demodulator | LTE Symbol Modulator

Functions
nrSymbolModulate

Introduced in R2019a
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NR Polar Encoder
Perform polar encoding according to 5G NR standard
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The NR Polar Encoder block implements a streaming polar encoder with hardware-friendly control
signals. The 5G NR standard requires polar encoding for channel coding of the DCI, UCI, and BCH
transmit channels.

The encoder implementation matches the nrPolarEncode function.

You must specify the link direction because the coding scheme defined by the 5G NR standard is
different for downlink and uplink messages. Downlink messages are encoded with interleaving and
uplink messages do not use interleaving.

Because the latency of this operation can vary, the block provides an output signal, nextFrame, that
indicates when the block is ready to accept new inputs. For more details, see the “Latency” on page
1-98 section on this page.

Ports
Input

data — Input data bit
scalar

Input data bit, specified as a scalar.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixdt(0,1,0) | Boolean | double | single

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus
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K — Length of information block in bits
positive integer

Length of information block in bits, specified as a positive integer. For downlink messages, K must be
in the range 36 to 164. For uplink messages, K must be in the range 18 to 25 or 31 to 1023.
Dependencies

To enable this port, set the Configuration source parameter to Input port.
Data Types: fixdt(0,10,0)

E — Rate-matched output length in bits
positive integer

Rate-matched output length in bits, specified as a positive integer. Specify a value for E that is
greater than K and less than or equal to 8192.
Dependencies

To enable this port, set the Configuration source parameter to Input port.
Data Types: fixdt(0,14,0)

Output

data — Encoded data bit
scalar

Encoded data bit, returned as a scalar. The block returns a message of N sequential bits. N is a power
of two determined from the values of K and E. The maximum output message size is 512 bits when
the Link direction is Downlink and 1024 bits when the Link direction is Uplink.
Data Types: fixdt(0,1,0) | Boolean | double | single

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

nextFrame — Ready for new inputs
scalar

The block sets this signal to 1 when the block is ready to accept the start of the next frame. If the
block receives an input start signal while nextFrame is 0, the block discards the frame in progress
and begins processing the new data.

For more information, see “Using the nextFrame Output Signal”.
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Data Types: Boolean

Parameters
Link direction — Direction of 5G NR link
Downlink (default) | Uplink

When you select Downlink, the block performs interleaving, as specified in the 5G NR standard.
When you select Uplink, the block omits the interleaving logic.

Configuration source — Source for K and E
Property (default) | Input port

Select Input port to enable the K and E ports. Select Property to use the Message length (K)
and Rate-matched length (E) parameters.

Message length (K) — Length of information block in bits
56 (default) | positive integer

For downlink messages, K must be in the range 36 to 164. For uplink messages, K must be in the
range 18 to 25 or 31 to 1023.

Dependencies

To enable this parameter, set the Configuration source parameter to Property.

Rate-matched length (E) — Rate-matched output length in bits
864 (default) | positive integer

Specify a value for E that is greater than K and less than or equal to 8192.

Dependencies

To enable this parameter, set the Configuration source parameter to Property.

Tips
• You cannot use this block inside an Enabled Subsystem or Resettable Subsystem.

Algorithms
This block implements the encoder by using log2(N) parallel encoding stages. The block stores the
whole message in the buffer, then interleaves and maps the information bits based on the pattern
specified in the standard for the values of K and E. The interleaving step is included only when you
set the Link direction parameter to Downlink.

This diagram shows the architecture of the polar encoder.
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The block uses the Configuration stage when the input K and E values change. The block computes
the new message length, N, and the locations of the information bits, then passes them to the buffer
and the mapping stage. Because the mapping patterns are computed as needed, rather than stored in
hardware, the block supports all K and E values within the supported range. The Configuration stage
also computes the interleave pattern when you set the Link direction parameter to Downlink.

When you set the Configuration source parameter to Property, the K and E values are constants,
so the decoder does not implement the Configuration stage. In this case, the block includes static
lookup tables that contain the precomputed configuration.

Latency

The exact latency varies based on the values of K and E. The latency is longer for frames where the K
and E values change and the block must compute the new configuration. Because the latency varies,
use the output nextFrame control signal to determine when the block is ready for a new input frame.

This waveform shows how the latency varies with values of K and E. For the first frame with a given
K and E value, the block must determine the message length and information bit mapping for those
values. This configuration step means that the block takes longer to start returning the encoded
samples. In this case, the block also takes longer before it is ready to accept the next input frame.
When the input K and E values are 132 and 256, respectively, the block has a latency of 535 cycles
from the input start signal to the output nextFrame. For subsequent frames with the same values for
K and E, the block is ready sooner because it does not need to recompute the configuration. The
waveform shows this new latency is 389 cycles. When the K and E values change to 54 and 124,
respectively, the block must compute the new configuration and the latency changes to 443 cycles.
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Performance

This table shows the resource and performance data synthesis results of the block when it is
configured with K and E as input ports and the Link direction parameter set to Uplink. The
generated HDL is targeted to a Xilinx Zynq-7000 ZC706 evaluation board. The design achieves a
clock frequency of 450 MHz.

Resource Number Used
Slice LUTs 637
Slice Registers 934
Block RAM 2.5

This table shows the resource and performance data synthesis results of the block when it is
configured with K and E as input ports and the Link direction parameter set to Downlink. The
generated HDL is targeted to a Xilinx Zynq-7000 ZC706 evaluation board. The design achieves a
clock frequency of 450 MHz.

Resource Number Used
Slice LUTs 600
Slice Registers 948
Block RAM 3.5

The block uses fewer resources when K and E are specified by parameters.

References
[1] 3GPP TS 38.211. "NR; Physical channels and modulation." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] Arikan, Erdal. "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for
Symmetric Binary-Input Memoryless Channels." IEEE Transactions on Information Theory 55,
no. 7 (July 2009): 3051–73. https://doi.org/10.1109/TIT.2009.2021379.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
nrPolarEncode | NR Polar Decoder

Introduced in R2020a
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NR Polar Decoder
Perform polar decoding according to 5G NR standard
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The NR Polar Decoder block implements a streaming polar decoder with hardware-friendly control
signals. The 5G NR standard uses polar codes for channel coding of the DCI, UCI, and BCH transmit
channels.

You must specify the link direction because the coding scheme defined by the 5G NR standard is
different for downlink and uplink messages. Downlink messages are encoded with interleaving and
use a CRC length of 24 bits. Uplink messages do not use interleaving, and use a CRC length of 6 or
11.

This block implements a CRC-aided successive-cancellation list decoder. This implementation
matches the performance of the nrPolarDecode function. You can choose a list length of 2, 4, or 8.
Increasing the list length increases the error correction performance but uses more hardware
resources and increases the decoding latency. You can improve decoding performance for DCI
messages by using the optional RNTI port to specify an expected RNTI value.

This block also performs CRC decoding of the message, equivalent to the nrCRCDecode function. The
block selects the CRC length based on your specification of the link direction and the K value you
provide. The block detects DCI messages from the values of K and E, and automatically prepends 1s
to the message, equivalent to the padCRC input argument of the nrPolarDecode function.

Because the latency of the polar decoding operation can vary, the block provides an output signal,
nextFrame, that indicates when the block is ready to accept new inputs. For more details, see the
“Latency” on page 1-107 section of this page.

Ports
Input

data — Input sample
scalar

Input sample, specified as a scalar log-likelihood ratio (LLR). The block supports builtin types, and
signed fixed-point values with a wordlength of 4 to 16 bits.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | int8 | int16 | double | single

ctrl — Control signals accompanying sample stream
samplecontrol bus
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Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

K — Length of information block in bits
positive integer

Length of information block in bits, specified as a positive integer. For downlink messages, K must be
in the range 36 to 164. For uplink messages, K must be in the range 18 to 25 or 31 to 1023.
Dependencies

To enable this port, set the Configuration source parameter to Input port.
Data Types: fixdt(0,10,0)

E — Rate-matched output length in bits
scalar positive integer

Rate-matched output length in bits, specified as a scalar positive integer. Specify a value for E that is
greater than K and less than or equal to 8192.
Dependencies

To enable this port, set the Configuration source parameter to Input port.
Data Types: fixdt(0,14,0)

RNTI — Target RNTI
16-bit unsigned integer

Target RNTI, specified as a 16-bit unsigned integer. This value increases decoding accuracy for DCI
messages. For example, when decoding SIB1 DCI messages, enable this port and set the target RNTI
to 65,535. For MIB decoding, you can disable this port or set the target RNTI to 0.
Dependencies

To enable this port, set Link direction to Downlink and select the Enable target RNTI port
parameter.
Data Types: uint16

Output

data — Decoded data bit
scalar

Decoded data bit, returned as a scalar. The output message length is A bits, where A = K – CRCLen.
For downlink messages, CRCLen is 24. For uplink messages, CRCLen is 11 or 6, as defined by the 5G
NR standard.
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Data Types: fixdt(0,1,0) | Boolean | double | single

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

err — CRC result
scalar

CRC result, returned as a scalar. If you clear the Full checksum mismatch parameter, this value is
a Boolean. When you select the Full checksum mismatch parameter, this value is a ufix24 scalar
for downlink messages and a ufix11 or ufix6 scalar for uplink messages.

If you enable the RNTI port, the block compares the internal CRC checksum against the target RNTI
value. Otherwise, the block compares the CRC checksum against a value of 0.
Data Types: Boolean | ufix11 | ufix24

nextFrame — Ready for new inputs
scalar

The block sets this signal to 1 when the block is ready to accept the start of the next frame. If the
block receives an input start signal while nextFrame is 0, the block discards the frame in progress
and begins processing the new data.

For more information, see “Using the nextFrame Output Signal”.
Data Types: Boolean

Parameters
Link direction — Direction of 5G NR link
Downlink (default) | Uplink

Direction of 5G NR link, specified as Downlink or Uplink. When you choose Downlink, the block
performs deinterleaving, as specified in the 5G NR standard. When you select Uplink, the block
omits the deinterleaving logic.

Downlink decoding uses a CRC length of 24 bits. Uplink decoding uses a CRC length of 6 bits (K in
the range 18 to 25) or 11 bits (K in the range 31 to 1023).

List length — Number of decoding paths
2 (default) | 4 | 8
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This parameter is the maximum number of parallel paths maintained in the decoding tree. Increasing
the list length increases the error correction performance but uses more hardware resources and
increases the decoding latency. When you use list lengths of 4 and 8, the latency can vary depending
on the SNR of the input signal, and is not constant for given values of K and E. Use the nextFrame
output signal to determine when the block is available for a new message.

Configuration source — Source for K and E
Property (default) | Input port

Select Input port to enable the K and E ports. Select Property to use the Message length (K)
and Rate-matched length (E) parameters.

Message length (K) — Length of information block in bits
56 (default) | positive integer

For downlink messages, K must be in the range 36 to 164. For uplink messages, K must be in the
range 18 to 25 or 31 to 1023.

Dependencies

To enable this parameter, set the Configuration source parameter to Property.

Rate-matched length (E) — Rate-matched output length in bits
864 (default) | positive integer

Specify a value for E that is greater than K and less than or equal to 8192.

Dependencies

To enable this parameter, set the Configuration source parameter to Property.

Full checksum mismatch — Return checksum from final decoding stage
off (default) | on

When you clear this parameter, the block returns a Boolean scalar on the err port that indicates
whether the CRC was successful. When you select this parameter, the block returns the full CRC
checksum on the err port. If your design decodes DCI messages and makes use of the RNTI
remainder, select this parameter.

If you enable the RNTI port, the block compares the internal CRC checksum with the target RNTI
value. Otherwise, the block compares the CRC checksum against a value of 0.

The nrPolarDecode function returns a decoded message that includes the CRC bits. This block
returns the decoded message without the CRC bits, and returns the CRC status separately on the err
port. This behavior is equivalent to calling the nrCRCDecode function after using the
nrPolarDecode function. Not recomputing the CRC bits saves hardware latency and resources.

Enable target RNTI port — Optional port to specify target RNTI value
off (default) | on

Select this parameter to enable the RNTI input port. Providing a target RNTI value increases
decoding accuracy for DCI messages. For example, when decoding SIB1 DCI messages, enable this
port and set the target RNTI to 65535. For MIB decoding, you can disable this port or set the target
RNTI to 0.
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Enabling this port also changes how the block computes the err output port value. If you enable the
RNTI port, the block compares the internal CRC checksum with the target RNTI value. Otherwise,
the block compares the CRC checksum against a value of 0.
Dependencies

To enable this parameter, set the Link direction parameter to Downlink.

Algorithms
This block implements a CRC-aided successive-cancellation list decoder. It can use a list length of 2,
4, or 8 as configured by the List length parameter. The decoder iterates over all LLRs in the tree to
reach a decision for a bit and then uses that decision to decode the next bit. The deinterleaving step
is included only when you set the Link direction parameter to Downlink.

This diagram shows the architecture of the polar decoder.

The block uses the Configuration stage when the K and E input port values change. The block
computes the locations of the information bits and passes them to the Decision stage. Because the
mapping patterns are computed as needed, rather than stored in hardware, the block supports all K
and E values within the supported range. The Configuration stage also computes the interleave
pattern when you set the Link direction parameter to Downlink.

When you set the Configuration source parameter to Property, the K and E values are constants,
so the decoder does not implement the Configuration stage. In this case, the block includes static
lookup tables that contain the precomputed configuration.

To minimize computations for each decode, the Tree Memory stores the probability of each node
being a one or a zero. Each iteration updates only the LLRs that have changed. The Core decoding
stage uses the LLR update equations from [3].

The Decision stage checks the LLR value against the expected locations of information bits and frozen
bits and returns a hard decision to the Tree Memory. If the bit is expected to be frozen, the Decision
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stage returns a hard decision of zero and updates the probabilities of related paths. The Path Memory
reconstructs the most likely paths from the hard decision results and passes the paths and scores to
the next stage.

Tree Memory and Path Memory contain up to List length paths. If all frozen bits on a path are zeros
(as expected), then the block discards the other parallel paths. This optimization results in variable
latency in the decoding operation for list lengths greater than two. For signals with a high noise level,
the decoder must increase the number of parallel paths and the cycles for decoding. For low-noise
signals, the decoder can use only two parallel paths and reduce the decoding latency.

The Path Selection stage computes the CRC for all paths and then chooses the path that passes the
CRC. When you use the RNTI input port, the block compares the internal CRC checksum with the
target RNTI value. Otherwise, the block compares the CRC checksum against a value of 0. If all CRCs
fail, the block returns the path that has the higher score.

This implementation matches the performance of the 5G Toolbox™ function nrPolarDecode with the
same list length. Because the block uses fixed-point internal types, any differences are a result of
quantization.

This plot shows the block error rate performance with the three possible list lengths. The input is 6-
bit LLR values.
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Latency

The table shows example latencies of the NR Polar Decoder block for each N, when decoding for
uplink and downlink channels with a list length of two. N is the power-of-two encoded message length
determined from the values of K and E.

N Uplink Latency Downlink Latency
32 349 Not applicable
64 576 677
128 1034 1135
256 1961 2062
512 3896 3996
1024 8202 Not applicable

The exact latency varies based on the values of K and E. The latency is longer for frames where the K
and E input port values change and the block must compute the new configuration.
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Increasing the list length increases the latency. List lengths greater than two do not have a fixed
latency for given K and E values. To provide minimal latency, the block traces more than 2 paths only
when the frozen bits are not decoded as zeroes. This optimization means that the latency can
increase with the SNR of the input signal. For example, for a list length of 4 and N=512, the best case
latency is 4108 cycles, and the worst case latency is 4985 cycles.

Because the latency varies, use the output nextFrame control signal to determine when the block is
ready for a new input frame.

This waveform shows how the latency varies with the K and E input port values for a list length of
two. When the input K and E port values are 132 and 256, the block has a latency of 2272 cycles from
the input start signal to the output nextFrame. When the K and E port values change to 54 and 124,
the latency changes to 1234 cycles.

This waveform shows how the latency can vary with the noise level of the input signal when using a
list length of 4. The block has K and E parameter values of 132 and 256 and Link direction
parameter set to Uplink. The first message has a latency of 2533 cycles. This message data is
generated with low noise and has few bit errors. In this case, the decoder can collapse to two paths
and produce a result in fewer cycles than when decoding a noisier signal. The second message is
generated with a high noise level, and the decoding latency increases to 3174 cycles. When the input
signal has more bit errors, the decoder must trace more paths to determine the correct bits.

Performance

This table shows the resource and performance data synthesis results of the block when it is
configured with K and E as input ports, the Link direction parameter set to Downlink, and 6-bit
input LLRs. The generated HDL is targeted to a Xilinx Zynq-7000 ZC706 evaluation board. The design
achieves a clock frequency of 250 MHz.
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Resource List Length of 2 List Length of 4 List Length of 8
Slice LUTs 3048 4725 9963
Slice Registers 2509 3804 6471
DSP48 0 0 0
Block RAM 4.5 5.5 6.0

The block uses fewer resources when K and E are specified by parameters. When you set the Link
direction parameter to Uplink, the block uses more memory to accommodate larger message sizes.

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).
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OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
nrPolarDecode | NR Polar Encoder

Introduced in R2020a
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LTE OFDM Demodulator
Demodulate time-domain OFDM samples and return LTE resource grid
Library: Wireless HDL Toolbox / Modulation

Description
The LTE OFDM Demodulator block implements an algorithm for demodulating LTE signals specified
by LTE standard TS 36.212 [1]. The block returns the LTE resource grid that is used for cell ID
detection, master information block (MIB) recovery, system information block (SIB)1 recovery, and
further decoding.

You can select the number of downlink resource blocks (NDLRB) and choose either normal or
extended cyclic prefix (CP), as described in the LTE standard. The block implements a CP fraction to
support windowed LTE transmission and provides a parameter to configure the location of prefix
removal.

The block provides an interface and architecture suitable for HDL code generation and hardware
deployment.

The block accepts input data either at maximum rate of 30.72 MHz, or at a sample rate
corresponding to NDLRB. The input sampling rates for NDLRB 6, 15, 25, 50, 75, and 100 are 1.92
MHz, 3.84 MHz, 7.68 MHz, 15.36 MHz, 30.72 MHz, and 30.72 MHz, respectively. The block uses a
2048-point fast fourier transform (FFT) for all values of NDLRB and returns the number of resource
grid samples needed for the selected NDLRB. By default, the block excludes the direct current (DC)
carrier.

The latency from the first input sample to the first output sample depends on your selection of the
NDLRB and type of cyclic prefix, as shown in this table.

 Maximum Sample Rate Corresponding to NDLRB Sample
Rate

NDLRB Latency — Normal
CP

Latency —
Extended CP

Latency — Normal CP Latency —
Extended CP

6 5295 5647 6654 6676
15 5241 5593 6520 6564
25 5181 5533 6660 6748
50 5031 5383 6700 6876
75 4881 5233 6930 7282
100 4731 5083 6780 7132
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Ports
Input

data — Input data
scalar

Input data, specified as a signed real or complex number.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid input data
Boolean scalar

Control signal that indicates when the sample from the data input port is valid. When this value is 1
(true), the block captures the values on the data input port. When this value is 0 (false), the block
ignores the input data samples.
Data Types: Boolean

NDLRB — Number of downlink resource blocks
6 | 15 | 25 | 50 | 75 | 100

Number of downlink resource blocks, specified as 6, 15, 25, 50, 75, or 100. NDLRB must be one of
these six values specified by LTE standard TS 36.212 [1]. The block samples this port at the start of
each subframe and ignores any changes within a subframe.

Dependencies

To enable this port, set the NDLRB source parameter to Input port.
Data Types: uint8 | uint16 | uint32 | fixdt(0,K,0), K >= 7 | single | double

cyclicPrefixType — Type of CP
scalar

Type of CP, specified as a Boolean scalar. When this value is 0 (false), the block selects normal CP.
When this value is 1 (true), the block selects extended CP. The block samples this port at the start of
each subframe and ignores any changes within a subframe.

Dependencies

To enable this port, set the Cyclic prefix source parameter to Input port.
Data Types: Boolean

reset — Clear internal states
scalar

Clears internal state, specified as a Boolean scalar. When this value is 1 (true), the block stops the
current calculation and clears all internal states. When this value is 0 (false), and the valid input
value is 1 (true), the block begins a new subframe.

Dependencies

To enable this port, select the Enable reset input port parameter.
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Data Types: Boolean

Output

data — Output data
scalar

Output data, returned as a signed real or complex number. The data type is the same as the data type
of the input data port. When you clear the Divide butterfly outputs by two parameter, the output
word length increases by 11 bits to avoid overflow.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid output data
scalar

Control signal that indicates when the data output port is valid. The block sets this value to 1 (true)
when the resource grid samples are available on the data output port. When Remove DC subcarrier
is selected, this value is set to 0 (false) at the center of the output samples to exclude the DC carrier.
Data Types: Boolean

ready — Indicates block is ready
scalar

Control signal that indicates when the block is ready for new input data. When this value is 1 (true),
the block accepts input data in the next time step. When this value is 0 (false), the block ignores input
data in the next time step.

Dependencies

To enable this port, set the Input data sample rate parameter to Match input data sample
rate to NDLRB.
Data Types: Boolean

Parameters
Main

NDLRB source — Source of NDLRB
Property (default) | Input port

You can set NDLRB with an input port or by selecting a value for the parameter. To enable the
NDLRB parameter, select Property. To enable the NDLRB port, select Input port.

NDLRB — Number of downlink resource blocks
6 (default) | 15 | 25 | 50 | 75 | 100

Number of downlink resource blocks, specified as 6, 15, 25, 50, 75, or 100. NDLRB must be one of
these six values specified by LTE standard TS 36.212 [1].

Dependencies

To enable this parameter, set the NDLRB source parameter to Property.
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Cyclic prefix source — Source of cyclic prefix type
Property (default) | Input port

You can set the cyclic prefix by selecting a parameter value or using an input port. To enable the
Cyclic prefix type parameter, select Property. To enable the cyclicPrefixType port, select Input
port.

Cyclic prefix type — Type of cyclic prefix
Normal (default) | Extended

Type of cyclic prefix, specified as Normal or Extended.

Dependencies

To enable this parameter, set the Cyclic prefix source parameter to Property.

CP fraction — Percent of cyclic prefix to remove
0.55 (default) | value from 0 to 1

Cyclic prefix fraction, specified as a value from 0 to 1, inclusive. This parameter specifies the
percentage of CP samples that the block removes from the start of the OFDM symbol. The block
shifts the remaining CP samples to the end of the OFDM symbol.

When this parameter is 0.55, the block removes 55% of the CP from the beginning of the symbol,
and shifts 45% to the end of the symbol. When you set this parameter to 1, the block removes 100%
of the CP from the start of the OFDM symbol, and does not shift any samples to the end.

CP fraction provides windowed LTE transmission support. When a transmitter applies windowing,
symbols are cyclically extended and overlapped. In a receiver design, the best location to remove the
prefix and extract the symbol depends on windowing settings at the transmitter. For more information
on windowing for an LTE transmitter, see the Algorithms section of lteOFDMModulate function.

Remove DC subcarrier — Exclude or include DC subcarrier
off (default) | on

When you select this parameter, the block excludes the DC subcarrier in the resource grid output.
The DC subcarrier is present at the center of the 12×NDLRB subcarriers. The block excludes the DC
subcarrier by setting the valid signal low (false) for the center cycle of the output subcarriers.

Enable reset input port — Reset signal
off (default) | on

Select this parameter to enable the reset port on the block icon.

Input data sample rate — Input sample rate
Use maximum input data sample rate (default) | Match input data sample rate to
NDLRB

This parameter specifies the type of sample rate to select for the input data.

• To provide an input data sample rate of 30.72 MHz, select Use maximum input data sample
rate.

• To provide an input data sample rate based on the NDLRB parameter, select Match input data
sample rate to NDLRB. The input sampling rates for NDLRB values 6, 15, 25, 50, 75, and 100
are 1.92 MHz, 3.84 MHz, 7.68 MHz, 15.36 MHz, 30.72 MHz, and 30.72 MHz, respectively.
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For more information, see “Data Rate Controller” on page 1-116.

FFT Parameters

Divide butterfly outputs by two — Divide FFT butterfly outputs by two
off (default) | on

This parameter controls the scaling option of the FFT block inside the LTE OFDM Demodulator.

When you select this parameter, the FFT implements an overall 1/N scale factor by dividing the
output of each butterfly multiplication by two. This adjustment keeps the output of the FFT in the
same amplitude range as its input. If you disable this parameter, the block avoids overflow by
increasing the word length by one bit after each butterfly multiplication.

Rounding Method — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter specifies the type of rounding mode for internal fixed-point calculations. For more
information about rounding modes, see Rounding Modes (DSP System Toolbox). When the input is
any integer data type or fixed-point data type, the FFT algorithm uses fixed-point arithmetic for
internal calculations. This parameter does not apply when the input is of data type single or
double. Rounding applies to twiddle-factor multiplication and scaling operations.

Algorithms
The LTE OFDM Demodulator block operation sequence is carried over using these blocks: Data Rate
Controller, CP Prefix Removal, Sample Repeater, FFT Shift, FFT, and Resource Grid Selection. The
Data Rate Controller block helps in controlling the input data rate by generating a ready signal. The
CP Removal block removes the part of the CP at the start of a symbol and the remainder of the CP at
the end of the symbol. The Sample Repeater block repeats the samples based on the NDLRB values.
The block repeats the samples until they form 2048 samples and converts the input data rate to the
maximum rate supported by LTE. The FFT Shift block performs a time-domain FFT shift. The FFT
block converts the frequency-domain signal to a time-domain signal. The Resource Grid Selection
block extracts the resource grid elements based on the NDLRB and the input data sample rate, and
provides the demodulated output. The parameters shown in this figure configure the behavior of the
block.
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Data Rate Controller

The block accepts input data either at maximum rate of 30.72 MHz, or at a sample rate
corresponding to NDLRB. The input sampling rates for NDLRB values 6, 15, 25, 50, 75, and 100 are
1.92 MHz, 3.84 MHz, 7.68 MHz, 15.36 MHz, 30.72 MHz, and 30.72 MHz, respectively.

When you set the Input data sample rate parameter to Use maximum input data sample
rate, the block operates based on the demodulation parameters (NDLRB and CP prefix type) and
provides output data along with an output valid signal to the next block.

When you set the Input data sample rate parameter to Match input data sample rate to
NDLRB, the block generates an output ready signal and controls the input at a rate with respect to
the NDLRB. The block accepts data samples with respect to the NDLRB when the ready signal is 1
(true).

This figure shows the timing diagram of the ready signal generation for a continuous input when
NDLRB is 6 and CP prefix type is Normal, having FFT length as 128 and CP length as 10.

numHigh = FFT length + CP length = 128 +10 = 138 clock cycles.

numLow = Maximum FFT length + Maximum CP length - (numHigh) = 2048 + 160 - (138) = 2070
clock cycles.

This figure shows the timing diagram of the ready signal generation for a discrete input with 1 (high)
for 16 clock cycles when NDLRB is 6 and CP prefix type is Normal, having FFT length as 128 and
CP length as 10.

numHigh = (FFT length + CP length -1) * Maximum FFT length / FFT length + 1 = (128 +10 -1) * 16
+ 1 = 2193 clock cycles.

numLow = Maximum FFT Length + Maximum CP Length - (numHigh) = 2048 + 160 - (2193) = 15
clock cycles.

Cyclic Prefix Removal

This block supports windowed LTE transmission by implementing fractional cyclic prefix removal.
Windowing reduces out-of-band emissions. A transmitter performs windowing by overlapping the tail
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of each OFDM symbol with the head of the next OFDM symbol. A receiver must avoid these
overlapped samples in the FFT calculation. Fractional CP solves this problem by removing part of the
CP at the start of a symbol and the remainder of the CP at the end of the symbol. Implementing a CP-
fraction algorithm also makes the LTE OFDM Demodulator block less sensitive to timing offset.

The Cyclic prefix type parameter controls whether the block expects normal or extended CP. When
the block operates at a maximum sample rate of 30.72 MHz, it assumes that each symbol is 2048
samples plus the cyclic prefix size associated with that rate. When using normal CP, the prefix of the
first symbol in each slot has 160 samples, while subsequent symbols have a prefix of 144 samples.
The extended CP has 512 samples.

When the block operates at sample rates with respect to the NDLRB value, for example, if the NDLRB
is 6, the block receives 128 samples plus the cyclic prefix size associated with that rate. When using
normal CP, the prefix of the first symbol in each slot has 10 samples, while subsequent symbols have a
prefix of nine samples. The extended CP has 32 samples.

The block handles the CP in two stages. First, the block calculates the number of CP samples to
remove, Nr, and removes those samples from the input samples. Next, it calculates the number of
samples to shift, Ns, and shifts those samples to the end of OFDM symbol in the time domain. These
two segments together make up the total cyclic prefix length, Ncp = Ns + Nr.

The CP fraction parameter controls how many samples the block removes at the beginning of the
symbol. The block shifts the remainder of the cyclic prefix from the start of the symbol to the end of
the symbol. The block quantizes CP fraction to fi(0,11,10). To achieve an integer number of
samples, the block calculates Nr = floor (Ncp * CP fraction).

The waveform shows the control signals for the two stages of CP removal. The block is configured for
a normal CP, so the CP of the first symbol is 160 samples. The CP for subsequent symbols is 144
samples. The CP fraction is 0.55.

In stage one, the block sets the internal valid signal to 0 (false) to exclude the first Nr samples of
the symbol. For the first symbol, Nr = 88. Manipulation of the valid signal also excludes the final Ns
samples, which are replaced by the shifted samples in the next stage. For the first symbol, Ns = 72.
In stage two, the block writes the Ns samples to a RAM, and then reads and returns these samples at
the end of the symbol. The block shifts the internal valid signal to include the shifted samples in their
new location. The result is 2048 samples, properly aligned in the time domain in preparation for an
FFT.

For the second symbol, with a cyclic prefix of 144 samples, Nr = 80 and Ns = 64.

For more information on LTE transmitter windowing, see the Algorithms section of the
lteOFDMModulate function.
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Sample Repeater

As the LTE OFDM Demodulator block uses a maximum FFT length of 2048. So, when the input
samples corresponding to the actual FFT length are provided, the Sample Repeater block repeats the
samples until it forms 2048 samples. For this operation, the block buffers the input samples first, and
then repeats the samples based on the NDLRB value. This repetition mechanism helps avoid scaling
at the FFT block input. For example, if the NDLRB is 6, each OFDM symbol consists of 128 samples.
The block converts these 128 samples to 2048 samples by repeating them 16 times. After the block
generates 2048 data samples, it sends data and valid signals to the next block.

Time-Domain FFT Shift

Conventionally, receivers perform FFT shift in the frequency domain. However, this method requires
memory and introduces latency related to the size of the FFT. Instead, a receiver can execute the
same operation in the time domain using the frequency shifting property of Fourier transforms.
Shifting a function in one domain corresponds to a multiplication by a complex exponential function
in the other domain. To reduce hardware resources and latency, this block performs the FFT shift by
multiplying the time-domain samples by a complex exponential function.

These equations describe an FFT shift. The equation for an N-point FFT is

X(k) = F[x(n)] = ∑
n = 0

N − 1
x(n)e−

j2πnk
N

For an FFT shift of N/2 carriers in either direction, substitute k = k− N
2 , resulting in

X(k− N
2 ) = ∑

n = 0

N − 1
x(n)e−

j2πn(k− N
2 )

N

This equation simplifies to

X(k− N
2 ) = ∑

n = 0

N − 1
e jπnx(n)e−

j2πnk
N

Since ∑
n = 0

N − 1
x(n)e−

j2πnk
N  is equivalent to F[x(n)], and e jπ = − 1, this equation simplifies to

X(k− N
2 ) = F[(− 1)nx(n)]

The final equation shows that an FFT shift in the time domain simplifies to multiplication by (-1)n.
Therefore, the block implements the FFT shift by multiplying the time-domain samples by either +1
or –1.

FFT

The output of the FFT shift subsystem is fed to an FFT block. The sample rate of the time-domain
samples must be 30.72 MHz. The block calculates a 2048-point FFT for all NDLRB values.

The Divide butterfly outputs by two parameter controls whether the FFT implements an overall
1/N scale factor by dividing the output of each butterfly multiplication by two. This adjustment keeps
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the output of the FFT in the same amplitude range as its input. When you disable scaling (default),
the block avoids overflow by increasing the word length by one bit after each butterfly multiplication.

Resource Grid Selection

This part of the algorithm selects the appropriate number of subcarriers based on the NDLRB. Out of
2048 subcarriers, the block selects the center 12xNDLRB subcarriers for output.

If the Remove DC subcarrier parameter is selected, the block excludes the DC subcarrier from the
final resource grid output. The block excludes the DC subcarrier by setting the valid signal to 0
(false) for the center cycle of the output subcarriers.

For NDLRB 25, the block returns 12×25=300 resource grid samples. The block indicates the location
of these output samples with the validOut signal set to 1 (true). The validOut signal is 0 (false) at
the center of the output samples, to exclude the DC carrier.

This waveform shows the output when you set the Input data sample rate parameter to Use
maximum input data sample rate and select an NDLRB of 25 with normal CP.

This waveform shows the output of the block when you set the Input data sample rate parameter to
Match input data sample rate to NDLRB and select an NDLRB of 25 with normal CP. The
block repeats four times at the input of FFT for computing 2048-point FFT. The actual FFT samples
are taken for every one in four samples at the output of FFT. The block chooses the center (12×25 =
300) resource grid elements and outputs them along with valid signal.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. The
input data type used for generating HDL code is fixdt(1,16,14).

This table shows the resource and performance data synthesis results when using the block with
default configuration. The generated HDL targeted to Xilinx Zynq XC7Z045I-FFG900-2L FPGA. The
design achieves a clock frequency of 280 MHz.

Resource Number Used
LUTs 6072
Registers 8291
DSPs 16
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Resource Number Used
Block RAM 23
F7 Muxes 0
F8 Muxes 0
RAMB36/FIFO 6
RAMB18 18
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[1] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

[2] Sesia, S., I. Toufik, and M. Baker, eds. LTE - The UMTS Long Term Evolution : From Theory to
Practice. Hoboken, NJ: John Wiley & Sons Ltd., 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).
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Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
LTE OFDM Modulator

Functions
lteOFDMDemodulate | lteOFDMModulate

Introduced in R2018a

 LTE OFDM Demodulator

1-121



Viterbi Decoder
Decode convolutionally encoded data using Viterbi algorithm
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The Viterbi Decoder block decodes convolutionally encoded data using a RAM-based traceback
implementation. Viterbi decoding is widely used in LTE standard TS 36.212 [1] and other forward-
error-correction (FEC) applications such as wireless networks (802.11a/b/g/n/ac), digital satellite
communications, digital video broadcast (DVB), IEEE 802.16, and HiperLAN. To support any of these
standards, the block accepts convolution codes with constraint lengths of 3 to 9, code rates 1/2 to 1/7,
and provides continuous, terminated, and truncated modes. The block provides an architecture and
interface suitable for HDL code generation.

The block supports decoding of punctured codes by providing an optional erasure input port. You can
use the Depuncturer block to insert neutral values in a punctured sample stream, and generate the
erasure signal.

The Viterbi Decoder block accepts input samples as hard-decision binary values or soft-decision log-
likelihood-ratios (LLR). Each sample is a column vector, whose length depends on the encoding
scheme. The first waveform shows continuous operation mode with input samples of signed 4-bit
data, using the default block parameters. The Traceback depth is 32. The block returns the first
decoded output data sample after 148 clock cycles. The decoding latency is 4×Traceback depth +
Constraint length + 13 valid input cycles.

The second waveform shows three frames in terminated operation mode. The input is unsigned 4-bit
samples, and the block is using the trellis (7,[171 133 112]). The Traceback depth is 32. The input
and output ctrl buses are expanded to show their three control signals. The latency from each input
ctrl.start to output ctrl.start is also 148 clock cycles.

The control signals in the bus indicate the validity of each sample and the boundaries of the frame. To
convert a matrix into a sample stream and corresponding control signals, use the Frame To Samples
block or the whdlFramesToSamples function. For a full description of the streaming sample
interface, see “Streaming Sample Interface”.
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Ports
Input

data — Input sample
column vector

Input sample, specified as an n-by-1 column vector, where n is the length of the generator polynomial.
The block performs soft-decision decoding when the input data type is fixed point or integer and
hard-decision decoding when the input data type is Boolean or fixdt(0,1,0). The block performs
unquantized soft-decision decoding for single and double data types, but these data types are not
supported for HDL code generation.

For soft-decision input samples, the block supports word lengths up to 16 bits. For HDL code
generation, a word length more than 8 bits is not recommended due to hardware resource usage. The
input data must have a fraction length of 0.
Data Types: int8 | int16 | uint8 | uint16 | Boolean | fixdt(0,1,0) | fixdt(S,WL,0) | single
| double

valid — Validity of input samples
scalar

Control signal that indicates when the sample from the data input port is valid. When the valid input
port is 1 (true), the block captures the values of the data input port. When the valid input port is 0
(false), the block ignores the input samples.

Dependencies

To enable this port, set Operation mode to Continuous.
Data Types: Boolean

erasure — Neutral symbol locations
column vector

Neutral symbol locations, specified as a column vector of binary values the same size as the input
data vector. When an erasure element is 1 (true), the corresponding input data element is a
depunctured neutral value, and the decoder does not update the branch metric. When an erasure
element is 0 (false), the block uses the corresponding input data element to update the branch
metric. You can use the Depuncturer block to drive this port.
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Dependencies

To enable this port, select Enable erasure input port.
Data Types: Boolean

reset — Clear internal state
scalar

Clear internal state, specified as a Boolean scalar. When reset is 1 (true), after one cycle, the block
stops the current calculation and clears internal branch and state metrics.

Dependencies

To enable this port, set Operation mode to Continuous and select Enable reset input port.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the input samples.

Dependencies

To enable this port, set Operation mode to Terminated or Truncated.
Data Types: bus

Output

data — Output sample
scalar

Output sample, returned as a scalar with the same data type as the input samples.
Data Types: int8 | int16 | uint8 | uint16 | Boolean | fixdt(0,1,0) | fixdt(S,WL,0) | single
| double

valid — Validity of output samples
scalar

Control signal that indicates when the sample from the data output port is valid. The block sets the
valid port to 1 (true) when there is a valid sample on the output data port.

Dependencies

Tho enable this port, set Operation mode to Continuous.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.
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Dependencies

To enable this port, set Operation mode to Terminated or Truncated.
Data Types: bus

Parameters
Constraint length — Trellis constraint length
7 (default) | integer in the range [3, 9]

Trellis constraint length, specified as an integer in the range [3, 9].

Code generator — Code generation polynomial
[171, 133] (default) | vector of octal values

Code generation polynomial, specified as a 1-by-n vector of octal values, where n is the length of the
polynomial. The block accepts polynomials from 2 to 7 elements long.

Enable erasure input port — Use optional erasure signal
off (default) | on

Select this parameter to enable the erasure port.

Traceback depth — Number of trellis branches
32 (default) | integer in the range [3, 128]

Number of trellis branches used to construct each traceback path, specified as an integer. The block
supports traceback depth in the range [3, 128]. For nonpunctured samples, the recommended depth
is 5×constraintLength. For punctured samples, the recommended depth is 10×constraintLength.
These values balance decoding accuracy with the amount of memory used.

Operation mode — End of frame behavior
Continuous (default) | Truncated | Terminated

End of frame behavior, specified as one of these modes:

• Continuous – The block does not clear the internal state metric. The input valid signal qualifies
the input samples.

• Truncated – The block resets the state metrics after each frame, and the traceback path starts at
the state with the best metric and ends in the all-zeros state. The input ctrl bus qualifies the input
samples and marks the frame boundaries.

Note This mode requires a minimum space of Constraint length–1 cycles between frames .
• Terminated – The block resets the state metrics after each frame, and the traceback path always

starts and ends in the all-zeros state. The input ctrl bus qualifies the input samples and marks the
frame boundaries.

Enable reset input port — Use optional reset signal
off (default) | on

Select this parameter to enable the reset port. When reset is 1 (true), after one cycle, the block
stops the current calculation and clears internal branch and state metrics.

 Viterbi Decoder

1-125



Dependencies

To enable this parameter, set Operation mode to Continuous.

Algorithms
The Viterbi Decoder block implements a RAM-based traceback using K-pointer odd algorithm [2]. The
parameter K is the number of read pointers required in the algorithm. This implementation has a K
value of two, and accesses three memories using two read and one write pointers. The three types of
operations are:

• Write (Wr): Save the survivor path information in memory.
• Traceback (TB): Read the survivor path information from the memory, and compute the previous

state based on the current state and survivor branch. The earliest state traced by this process is
then used as the initial state to decode the previous memory block of the data.

• Decoding (Dec): Read the survivor path information from the memory and decode the input.

Each of the three memories is Traceback depth (tbd) size. The K-pointer algorithm takes
4×Traceback depth cycles to decode the data.

The diagram shows how the three operations use the three memory banks. For two multiples of
Traceback depth, write the survivor metrics in forward direction to Mem#1 and Mem#2. Then,
while continuing to write to Mem#3, traceback from Mem#2 to find the minimum index. Use that
index as a pointer to traceback from Mem#1 and obtain the decoded value. After the decoded value
is read, the block writes the new input survivor path to the same location. This write starts the next
decoding cycle.

In the Viterbi algorithm, the add-compare logic can cause a state metric overflow. These overflows
degrade the decoder performance. Modulo normalization is used to mitigate the effects of overflow
[3]. The block implements modular arithmetic using two's complement adders and subtractors as
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shown in the diagram. A subtractor is used in place of a comparator. An overflow is detected by
checking the most significant bit (MSB) of (m1-m2), where m1m2 are the normalization metrics.
When an overflow is detected, m1 and m2 provide a wrapped value.

Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
XilinxZynq-7000 ZC706 board. The block is using ufix4 input samples, in continuous mode with
default settings. The design achieves a clock frequency of 260 MHz.

Resource Number Used
LUT 3861
FFS 2521
Xilinx LogiCORE DSP48 0
Block RAM (16k) 2

The word length of the input samples affects the timing and the resources used in metric
computation. Increasing the Traceback depth uses more RAM.

References
[1] 3GPP TS 36.212. "Multiplexing and channel coding." 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

[2] Horwitz, M., and R. Braun. "A Generalised Design Technique for Traceback Survivor Memory
Management in Viterbi Decoders." Proceedings of the 1997 South African Symposium on
Communications and Signal Processing: 63-68. Piscataway, NJ: IEEE, 1997.
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[3] Shung, C.b., P.h. Siegel, G. Ungerboeck, and H.k. Thapar. "VLSI Architectures for Metric
Normalization in the Viterbi Algorithm." IEEE International Conference on Communications,
Including Supercomm Technical Sessions: vol 4. 1726-728. New York, N.Y. : IEEE, 1990.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Depuncturer | Convolutional Encoder

Introduced in R2018b
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Convolutional Encoder
Encode data bits using convolution coding — optimized for HDL code generation
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The Convolutional Encoder block encodes data bits using convolution coding. The block supports
code rates from 1/2 to 1/7 and constraint lengths from 3 to 9 including both recursive and
nonrecursive polynomials. The block provides an architecture suitable for HDL code generation and
hardware deployment.

The block operates in three modes: continuous with an optional reset port, terminated, and truncated
with optional initial state and final state ports. In Continuous mode, the block accepts data bits,
along with a valid signal, and outputs encoded bits with a valid signal. In Terminated and
Truncated modes, the block accepts data bits, along with a samplecontrol bus and outputs
encoded bits with a samplecontrol bus.

The block supports communication standards such as Wi-Fi (802.11a/b/g/n/ac), digital satellite
communications, digital video broadcast (DVB), 3GPP2, IEEE 802.16, HIPERLAN, and other
technologies. You can use this block to implement other channel codes such as turbo codes, which are
used in LTE standards.

This waveform shows the encoded output of the block in Terminated mode, when block parameter
Constraint length is set to 7, Code generator to [133 171], and Feedback connection to 0. The
input and output ctrl buses are expanded to show their control signals.

The latency of the block is three clock cycles, so the block returns the first encoded output data after
three clock cycles. In the Terminated mode, after the end of the frame, the block resets the encoded
states to all zeros state by appending (Constraint length – 1) bits. So, the waveform shows the
frame gap of six (Constraint length – 1) clock cycles between the end of the frame (ctrlIn.endIn)
and the start of the next frame ctrlln.startIn.
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Ports
Input

data — Input data bits
scalar

Input data bits, specified as Boolean or ufix1.
Data Types: Boolean | fixed point

valid — Validity of input data
scalar

Control signal that indicates if the input data is valid. When this value is 1 (true), the block accepts
the values on the data input port. When this value is 0 (false), the block ignores the values on the
data input port.

Dependencies

To enable this port, set the Operation mode parameter to Continuous.
Data Types: Boolean

reset — Clears internal states
scalar

Clears internal states, specified as a Boolean scalar. When this value is 1 (true), the block stops the
current calculation and clears all encoder states.

Dependencies

To enable this port, set the Operation mode parameter to Continuous and select the Enable reset
input port parameter.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the input samples.

• start — Indicates start of input frame.
• end — Indicates end of input frame.
• valid — Indicates the data on the input data port is valid.

Dependencies

To enable this port, set the Operation mode parameter to Truncated or Terminated.
Data Types: bus

ISt — Initial state at every start of frame
scalar
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Initial state of block at every start of frame, specified as fixdt(0,constraint length -1,0).
Input state is the number of binary bits in the shift register at the frame start of the block, which is
read from most significant bit (MSB) to least significant bit (LSB).

double and single data types are supported for simulation, but not for HDL code generation.
Dependencies

To enable this port, set the Operation mode parameter to Truncated and select the Enable initial
state input port parameter.
Data Types: single | double | fixed point

Output

data — Encoded output data
column vector

Output data, returned as 1-by-n column vector, if the code rate is 1/n. The n value ranges from 2 to 7.
Data Types: Boolean

valid — Validity of output samples
scalar

Control signal that indicates if the data from the data output port is valid. When this value is 1 (true),
the block returns valid data on the data output port. When valid is false (0), the values on data
output port are not valid.
Dependencies

To enable this port, set the Operation mode parameter to Continuous.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates start of output frame.
• end — Indicates end of output frame.
• valid — Indicates the data on the output data port is valid.

Dependencies

To enable this port, set the Operation mode parameter to Truncated or Terminated.
Data Types: bus

FSt — Final state of frame at every frame end
scalar

Final state of frame at every frame end, returned as fixdt(0,constraint length -1,0). Final
state is the number of binary bits in the shift register at the frame end of the block, which is read
from most significant bit (MSB) to least significant bit (LSB).
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The block returns the same as the ISt data type.
Dependencies

To enable this port, set the Operation mode parameter to Truncated and select the Enable final
state output port parameter.
Data Types: single | double | fixed point

Parameters
Main

Constraint length — Constraint length of block
7 (default) | integer in the range [3, 9]

Constraint length of the block, specified as an integer in the range [3, 9].

Code generator — Code generation polynomial
[171 133] (default) | vector of octal values

Code generation polynomial, specified as a 1-by-n vector of octal values, where n is the length of the
polynomial ranged from 2 to 7.

Feedback connection — Feedback connection polynomial
0 (default) | scalar octal number

Feedback polynomial, specified as a scalar octal number. If the feedback connection is 0, there is no
feedback connection enabled.

To enable feedback connection, specify an octal value whose binary representation must be a K-bit
number with MSB 1, where K is the Constraint length. For more information on how to construct a
feedback polynomial, refer to “Convolutional Codes”.

Operation mode — Mode of operation
Continuous (default) | Terminated | Truncated

Mode of operation, specified as one of these modes:

• Continuous — In this mode, the block starts with all zeros state and retains the encoder states at
the end of each input, for use with the next input.

• Terminated — In this mode, the block considers each input frame independently. The encoder
states of the block are reset to all-zeros state at the end of each frame by appending bits.

Note This mode requires a minimum frame gap of Constraint length – 1 cycles between frames.
If no sufficient frame gap is provided, the block stops processing the old frame and starts
processing a new frame.

• Truncated — In this mode, the block considers each input frame independently. The encoder
states are reset to all-zeros state at the start of each input.

Control Ports

Enable reset input port — Reset input signal
off (default) | on
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Select this parameter to enable the reset port. When reset is 1 (true), the block resets the encoder
state in the next clock cycle.

Dependencies

To enable this parameter, set the Operation mode parameter to Continuous.

Enable initial state input port — Initial state input signal
Off (default) | On

Select this parameter to enable the ISt port.

Dependencies

To enable this parameter, set the Operation mode parameter to Truncated.

Enable final state output port — Final state output signal
Off (default) | On

Select this parameter to enable the FSt port.

Dependencies

To enable this parameter, set the Operation mode parameter to Truncated.

Algorithms
A polynomial description of a Convolutional Encoder block describes the connections among shift
registers and modulo 2 adders. This figure shows two sample encoding operations, one without
feedback that has one input, two outputs, and two shift registers and the other with feedback that has
one input, two outputs, and two shift registers.

b(n) represents input data bit stream and b(n-1) and b(n-2) represent the 2-bit shift register of the
encoder. Out1(n) and Out2(n) represent the 2-bit output. From this figure, you can calculate the block
mask parameters based on the Convolutional codes concepts. For more information about
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Convolution codes concepts, refer to “Convolutional Codes”. So, based on the connections provided in
the figure, the Constraint length is 3, Code generator value is [5 7]. The Feedback connection
value is 0 for the encoder without feedback connection and 6 for the encoder with feedback
connection.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. This
table shows the resource and performance data synthesis results of the block with the default
configuration parameters, when operated in Terminated mode. The generated HDL is targeted to
Xilinx Zynq XC7Z045-FFG900-2 FPGA. The design achieves a clock frequency of 1223 MHz.

Resource Number Used
Slice LUTs 13
Slice registers 25
Block RAM 0
DSPs 0

References
[1] Lin, Shu, and Daniel J. Costello. Error Control Coding By Shu Lin, Daniel J. Costello, Second

Edition. Upper Saddle River, NJ: Prentice Hall, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).
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OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Convolutional Encoder | Puncturer

Introduced in R2019b
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FFT 1536
Computes fast-fourier-transform (FFT) for LTE standard transmission bandwidth of 15 MHz
Library: Wireless HDL Toolbox / Modulation

Description
The FFT 1536 block is designed to support LTE standard transmission bandwidth of 15 MHz. This
block is used in LTE OFDM Demodulator block operation. The block accepts input data, along with a
valid control signal and outputs streaming data with a samplecontrol bus.

The block provides an architecture suitable for HDL code generation and hardware deployment.

Ports
Input

data — Input data
scalar of real or complex values

Input data, specified as a scalar of real or complex values.

double and single data types are supported for simulation, but not for HDL code generation.

The more the fractional bits you provide in the input word length, the better the accuracy you receive
in the output.
Data Types: double | single | int8 | int16 | int32 | fixed point

valid — Indicates valid input data
scalar

Indicates if the input data is valid. When the input valid is 1 (true), the block captures the value on
the input data port. When the input valid is 0 (false), the block ignores the input data samples.
Data Types: Boolean

reset — Reset control signal
scalar

When this value is 1 (true), the block stops the current calculation and clears all internal states.

Dependencies

To enable this port, select the Enable reset input port parameter.
Data Types: Boolean
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Output

data — Frequency channel output data
scalar of real or complex values

Frequency channel output data, returned as a scalar of real or complex values.

When the input is of fixed point data type, the output data type is the same as the input data type.
When the input is of integer type, the output data type is of fixed point type.
Data Types: double | single | int8 | int16 | int32 | fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Parameters
Main

Complex multiplication — HDL implementation
Use 3 multipliers and 5 adders (default) | Use 4 multipliers and 2 adders

Specifies the complex multiplier type for HDL implementation. Each multiplication is implemented
either with Use 3 multipliers and 5 adders or with Use 4 multipliers and 2 adders.
The implementation speed depends on the synthesis tool and the target device that you use.

Rounding method — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Specifies the type of rounding method for internal fixed-point calculations. For more information
about rounding methods, see “Rounding Modes” (DSP System Toolbox). When the input is any integer
or fixed-point data type, this block uses fixed-point arithmetic for internal calculations. This
parameter does not apply when the input data is single or double.

Normalize butterfly output — Output normalization
off (default) | on

When you select this parameter, the block divides the output by 1536. This option is useful when you
want the output of the block to stay in the same amplitude range as its input. You require this option
when the input is of fixed point type.

When you select this parameter, the output word length increases by 2 bits and when you clear this
parameter the output word length increases by 11 bits.
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Control Ports

Enable reset input port — Optional reset signal
off (default) | on

Select this parameter to enable the reset port.

Algorithms
To design an FFT 1536 block, radix-3 decimation-in-time (DIT) algorithm is implemented. The input
sequence x(n) for all n = {0,1,2....1535} is divided into three DIT sequences, x(3n), x(3n+1), x(3n+2)
for all n = {0,1,2....511}.

This equation defines FFT 1536 computation of a given sequence x(n).

x(k) = ∑
n = 0

1535
x(n)W1536nk; k = 0, 1, 2, ..., 1535

The equation can be implemented by dividing it into three parts, where P(k), Q(k), R(k) are the N/3
(FFT 512) point FFT of x(3n), x(3n+1), and x(3n+2), respectively. Here, N = 1536, and k =
0,1,2,.....,511.

x(k) = P(k) + WNkQ(k) + WN2kR(k)

x(k + N/3) = P(k) + W31WNkQ(k) + W32WN2kR(k)

x(k + 2N/3) = P(k) + W32WNkQ(k) + W31WN2kR(k)

This diagram shows the internal architecture of the block and how the input sequence streams
through the components of the block.

The input sequence x(n) is demultiplexed into three DIT sequences, x(3n), x(3n+1), x(3n+2), each of
length 512. Three first-input first-output (FIFO) memories store these sequences. These DIT
sequences are serialized and streamed through the FFT 512 block.
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Latency

This image shows the output waveform of the block when operated with default configuration
parameters. The block provides output data after a latency of 3180 clock cycles. The length of the
output data between start (Ctrl.(1)) and end (Ctrl.(2)) output control signals is 1536 clock cycles.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. This
table shows the resource and performance data synthesis results of the block with default
configuration parameters, along with normalization feature enabled, and with an input data in
fixdt(1,17,15) format. The generated HDL is targeted to Xilinx Zynq XC7Z045-FFG900-2 FPGA
board. The design achieves a clock frequency of 355 MHz.

Resource Number Used
LUTs 7330
Registers 9325
Block RAMs 18
DSPs 36

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).
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InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
FFT

Introduced in R2019b
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Puncturer
Punctures data according to puncture vector
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The Puncturer block punctures input data based on a specified puncture vector. The block accepts
puncture vector either from the Input port or from the Property of the block and supports
encoder rates from 1/2 to 1/7. It provides an architecture suitable for HDL code generation and
hardware deployment.

The block supports Continuous and Frame mode operations and accepts both scalar and vector
data. In Continuous mode, the block accepts input data and puncture vector, along with control
signals valid and syncPunc and outputs punctured data with a valid signal. In Frame mode, the block
accepts input data and puncture vector, along with a samplecontrol bus and outputs punctured
data with a samplecontrol bus.

The block supports communication standards such as Wi-Fi (802.11a/b/g/n/ac), digital satellite
communications, digital video broadcast (DVB), WiFi (IEEE 802.11a/b/g/n/ac), WiMax (IEEE 802.16),
IEEE 802.16, HIPERLAN, and HiperMAN.

Ports
Input

data — Input data sample
scalar | column vector of size from 2 to 7

Input data sample, specified as a scalar or vector.

If input is of vector type, the size of the input data must match with the selected Encoder rate
parameter value.

For example, if the Encoder rate is 1/2, the input data size must be 2-by-1.
Data Types: Boolean | fixdt(0,1,0)

valid — Indicates valid input data samples
scalar

Control signal that indicates if the input data is valid. When this value is 1 (true), the block accepts
the values on the data input port. When this value is 0 (false), the block ignores the values on the
data input port.
Dependencies

To enable this port, set the Operation mode parameter to Continuous.
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Data Types: Boolean

puncVector — Puncture vector
column vector of binary values

Puncture vector, specified as a column vector of binary values. The length of the puncture vector
must be an integral multiple of n, where Encoder rate is 1/n. For encoder rates 1/2, 1/3, 1/5, and 1/6,
the maximum length of the puncVector is 30 and for encoder rates 1/4 and 1/7, the maximum length
of the puncVector is 28.

You can change the puncVector pattern, but its length must remain constant. If the maximum
puncture vector length provided is 10, the block supports all the vector lengths below 10.
Example: For an encoder rate 1/2 and its puncture rates 2/3, 3/4, and 5/6, the respective vector
lengths are 4, 6, and 10. To achieve these multiple rates, set the Puncture vector source parameter
to Input port. To support the largest vector size, the vector length must be 10 for all rates. For 2/3
and 3/4 rates, pad the puncVector input with zeros to create a 10-element vector. The puncture
vector for rate 3/4 is [1 1 0 1 1 0]'. For a vector length of 10, use [0 0 0 0 1 1 0 1 1 0]'
as the input puncVector.

When the Operation mode parameter is set to Continuous, the block captures the value of
puncVector when both syncPunc and input valid port signals are 1 (true).

When the Operation mode parameter is set to Frame, the block captures the value of puncVector
when both ctrl.start and ctrl.valid signals are 1 (true).

Dependencies

To enable this port, set the Puncture vector source parameter to Input port.
Data Types: Boolean

syncPunc — Puncture synchronization signal
scalar

Puncture synchronization signal, specified as a Boolean scalar value. This input is a control signal
that synchronizes the puncture vector input with the input sample. When both syncPunc and valid
are 1 (true), the block aligns the puncture vector to begin puncturing. The block captures the vector
from either the puncVector input port or from the Puncture vector parameter.

The block ignores the puncVector signal values when syncPunc signal value is 0 (false).

Dependencies

To enable this port, set the Operation mode parameter to Continuous.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the input samples.

• start — Indicates start of input frame.
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• end — Indicates end of input frame.
• valid — Indicates that the data on the input data port is valid.

Dependencies

To enable this port, set the Operation mode parameter to Frame. In this mode, the block
synchronizes the puncture vector using control signals in the input samplecontrol bus.
Data Types: bus

Output

data — Punctured output data
n-by-1 column vector

Punctured output data, returned as an n-by-1 column vector, where n value ranges from 1 to 7.
Data Types: Boolean | fixdt(0,1,0)

valid — Validity of output data samples
scalar

Control signal that indicates when the sample from the data output port is valid. The block sets the
valid port to 1 (true) when there is a valid sample on the output data port.
Dependencies

To enable this port, set the Operation mode parameter to Continuous.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates start of output frame.
• end — Indicates end of output frame.
• valid — Indicates that the data on the output data port is valid.

Dependencies

To enable this port, set the Operation mode parameter to Frame.
Data Types: bus

Parameters
Operation mode — Mode of operation
Continuous (default) | Frame

Mode of operation, specified as one of these modes:

• Continuous — Allows changes to puncVector at any time. To force the block to capture the new
puncture vector, set the syncPunc parameter to 1 (true).
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• Frame — Allows changes to puncVector only at the start of a frame, indicated by ctrl.start.

Encoder rate — Rate of encoder
1/2 (default) | range from 1/2 to 1/7

Select the encoder rate for puncturing the data.

Puncture vector source — Source of puncture vector
Input port (default) | Property

Source of puncture vector, specified as:

• Input port — Specify the puncture vector using the puncVector port.
• Property — Specify the puncture vector using the Puncture vector parameter.

Puncture vector — Location of data to be punctured
[1;1;1;0;0;1] (default) | column vector of binary values

The length of the puncture vector must be an integral multiple of n, where Encoder rate is 1/n. For
encoder rates 1/2, 1/3, 1/5, and 1/6, the maximum length of the puncture vector is 30 and for encoder
rates 1/4 and 1/7 the maximum length of the puncture vector is 28.

Dependencies

To enable this port, set the Puncture vector source parameter to Property.

Algorithms
The puncturing algorithm checks every n elements of a puncture vector, with an Encoder rate 1/n,
until it reaches a nonzero combination. Then, it punctures the input data and provides the punctured
output data.

For example, if the Encoder rate is 1/3 and the puncture vector is [0;0;0;1;0;1], the block
checks every 3 elements until it reaches a nonzero combination in the puncture vector and then
punctures the input data based on the type of inputs (scalar or vector) and operation modes
(Continuous or Frame).

Scalar Input

• Continuous mode — When the puncture vector element is 0, the block punctures the input data
and provides no output. When the puncture vector element is 1, the block provides the
corresponding input data as output.

• Frame mode — When the puncture vector element is 1, the block stores the corresponding input
data in a buffer. It waits till it encounters the next 1 in the puncture vector and then provides the
previous buffered data as output.
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When the puncture vector element is 0, the block punctures the input data and provides no
output. But, if the endIn signal is 1 (high), the block provides the previous buffered data as
output. The block repeats the similar process throughout the frame.

Vector Input

• Continuous mode — For a 3-by-1 vector input data with Encoder rate 1/3, the block selects 3
elements of the puncture vector at a time. When the puncture vector element is 0, the block
punctures the data and provides no output. When the puncture vector element is 1, the block
stores the corresponding input data. The block provides the output only when the stored data
count reaches 3.

• Frame mode — The block behaves similarly as when in Continuous mode. But, when the endIn
signal is 1 (high) and the stored data count is less than 3, the block pads zeros and then outputs
the data.

Latency

The latency of the block varies with the puncture vector and encoder rate. The above waveforms
show the latency of the block for a sample scalar and vector input data with different puncture
vectors.

Performance

These resource and performance data are the synthesis results from the generated HDL targeted to a
XilinxZynq-7000 ZC706 board. The block is using Boolean input samples, in continuous mode with
default settings with puncture vector length 6. The design achieves a clock frequency of 559 MHz.
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Resource Number Used
LUT 50
FFS 40

If you set the Puncture vector source parameter to Property, the design uses fewer LUT and FFS
resources with more frequency. The hardware resources and frequencies vary based on the encoder
rate and the puncture vector size.

References
[1] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std

802.11™- 2016 Part 11.

[2] EN 300 421 V1.1.2 Digital Video Broadcasting (DVB); Framing structure, Channel coding and
modulation for 11/12 GHz satellite services.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

This block does not have any HDL Block Properties.

See Also
Blocks
Convolutional Encoder | Depuncturer

Introduced in R2019b
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OFDM Demodulator
Demodulate time-domain OFDM samples and return subcarriers for custom communication protocols
Library: Wireless HDL Toolbox / Modulation

Description
The OFDM Demodulator block demodulates time-domain orthogonal frequency division multiplexing
(OFDM) samples and outputs subcarriers based on the OFDM parameters. The block supports 5G
new radio (NR) standard, long term evolution (LTE) [1], wireless local area network (WLAN
802.11a/g/n/ac) [2], WiMAX, digital video broadcast (DVB), and digital audio broadcast (DAB)
standards.

The block accepts input data along with a valid control signal and these OFDM parameters: FFT
length, CP length, and the number of right and left guard subcarriers. The block outputs demodulated
data along with valid and ready controls signals. The block enables the ready output port only when
these OFDM parameters are provided to the block through input ports. The block samples the
corresponding OFDM parameters only when the ready port is 1 (high) and the first valid port of each
OFDM symbol is 1 (high).

The block supports scalar and vector inputs. You can use a vector input to increase the data
throughput and achieve a giga-sample-per-second (GSPS) throughput. The block provides an
interface and architecture suitable for HDL code generation and hardware deployment.

Ports
Input

data — Input data
scalar | column vector

Input data, specified as a scalar or column vector of real or complex values. The vector size must be a
power of 2, in the range from 1 to 64, and less than or equal to the FFT length.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid input data
scalar

Indicates valid input data, specified as a scalar.

This port is a control signal that indicates when the sample from the data input port is valid. When
this value is 1, the block captures the values on the data input port. When this value is 0, the block
ignores the values on the data input port.
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Data Types: Boolean

FFTLen — Length of FFT
scalar

Length of the FFT, specified as a scalar. The FFT length must be power of 2 and in the range from 8
to 65,536. This value must be less than or equal to the Maximum FFT length parameter value.

To support the minimum FFT length of 8, the FFTLen data type must be fixdt(0,k,0), where k is
greater than or equal to 4.

Dependencies

To enable this port, set the OFDM parameters source parameter to Input port.
Data Types: single | double | uint8 | uint16 | uint32 | unsigned fixed point

CPLen — Length of cyclic prefix
scalar

Length of the cyclic prefix, specified as a scalar in the range from 0 to FFTLen.

To support the minimum FFT length of 8, the CPLen data type must be fixdt(0,k,0), where k is
greater than or equal to 4.

Dependencies

To enable this port, set the OFDM parameters source parameter to Input port.
Data Types: single | double | uint8 | uint16 | uint32 | unsigned fixed point

numLgSc — Number of left guard carriers of OFDM symbol
scalar

Number of left guard carriers of OFDM symbol, specified as a scalar in the range from 0 to
(FFTLen/2) – 1.

To support the minimum FFT length of 8, the numLgSc data type must be fixdt(0,k,0), where k
is greater than or equal to 2.

Dependencies

To enable this port, set the OFDM parameters source parameter to Input port.
Data Types: single | double | uint8 | uint16 | uint32 | unsigned fixed point

numRgSc — Number of right guard carriers of OFDM symbol
scalar

Number of right guard carriers of OFDM symbol, specified as a scalar in the range from 0 to
(FFTLen/2) – 1.

To support the minimum FFT length of 8, the numRgSc data type must be fixdt(0,k,0), where k
is greater than or equal to 2.

Dependencies

To enable this port, set the OFDM parameters source parameter to Input port.
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Data Types: single | double | uint8 | uint16 | uint32 | unsigned fixed point

reset — Clear internal states
scalar

Clear internal states, specified as a scalar. When this value is 1 (true), the block stops the current
calculation and clears all internal states.

Dependencies

To enable this port, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — Demodulated output data
scalar | column vector

Demodulated output data, returned as a complex-valued scalar or column vector. Output data type is
dependent on the data type of the input data port.

• When you set the OFDM parameters source parameter to Property and clear the Divide
butterfly outputs by two parameter, the output word length increases by log2(FFT length) bits.

• When you set the OFDM parameters source parameter to Input port and clear the Divide
butterfly outputs by two parameter, the output word length increases by log2(Maximum FFT
length) bits.

To avoid overflow, select the Divide butterfly outputs by two parameter.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid output data
scalar

Indicates valid input data, returned as a scalar.

This port is a control signal that indicates when the data output port is valid. The block sets this
value to 1 when the data samples are available on the data output port. When you select the Remove
DC subcarrier parameter, this value is set to 0 at the center of the output samples to exclude the DC
carrier.
Data Types: Boolean

ready — Indicates block is ready
scalar

Control signal that indicates when the block is ready for new input data. When this value is 1, the
block accepts input data in the next time step. When this value is 0, the block ignores input data in
the next time step.

Dependencies

To enable this port, set the OFDM parameters source parameter to Input port.
Data Types: Boolean
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Parameters
Main

OFDM parameters source — Source of OFDM parameters
Property (default) | Input port

You can set OFDM parameters with an input port or by selecting a value for the parameter.

Select Property to enable the FFT length, Cyclic prefix length, Number of left guard
subcarriers, and Number of right guard subcarriers parameters.

Select Input port to enable the FFTLen, CPLen, numLgSc, numRgSc input ports and the
Maximum FFT length parameter. The Maximum FFT length parameter sets the upper bound of
the range of valid values for the FFTLen input port.

Maximum FFT length — Maximum length of FFT length
64 (default) | power of 2 in range from 8 to 65,536

Specify the maximum length of the FFT.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Input port.

FFT length — Length of FFT
64 (default) | power of 2 in range from 8 to 65,536

Specify the FFT length. When you set the OFDM parameters source parameter to Property, the
block uses this FFT length value as the maximum FFT length.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Property.

Cyclic prefix length — Length of cyclic prefix
16 (default) | integer in range from 0 to FFT length

Specify the length of the cyclic prefix.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Property.

Number of left guard subcarriers — Number of guard band subcarriers in left extreme
of OFDM symbol
6 (default) | integer in range from 0 to (FFT length/2) – 1

Specify the number of left guard subcarriers.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Property.

Number of right guard subcarriers — Number of guard band subcarriers in right
extreme of OFDM symbol
5 (default) | integer in range from 0 to (FFT length/2) – 1

1 Blocks

1-150



Specify the number of right guard subcarriers.
Dependencies

To enable this parameter, set the OFDM parameters source parameter to Property.

Enable CP Fraction — CP fraction enabler
off (default) | on

Select this parameter to enable the CP Fraction parameter on the block mask.

CP Fraction — Percent of cyclic prefix to remove
0.55 (default) | range from 0 to 1

Cyclic prefix fraction, specified as a value from 0 to 1, inclusive. This parameter specifies the
percentage of CP samples that the block removes from the start of the OFDM symbol. The block
shifts the remaining CP samples to the end of the OFDM symbol.

When this parameter is 0.55, the block removes 55% of the CP from the beginning of the symbol,
and shifts 45% to the end of the symbol. When you set this parameter to 1, the block removes 100%
of the CP from the start of the OFDM symbol, and does not shift any samples to the end.
Dependencies

To enable this parameter, select the Enable CP Fraction parameter.

Remove DC subcarrier — Exclude or include DC subcarrier
on (default) | off

When you select this parameter, the block excludes the DC subcarrier in the output by setting the
output valid signal to 0 for the center of the output subcarriers.

Enable reset input port — Reset signal
off (default) | on

Select this parameter to enable the reset input port.

FFT Parameters

Divide butterfly outputs by two — Divide FFT butterfly outputs by two
off (default) | on

This parameter controls the scaling option of the FFT block inside the OFDM Demodulator block.

When you select this parameter, the FFT implements an overall 1/N scale factor by dividing the
output of each butterfly multiplication by two. This adjustment keeps the output of the FFT in the
same amplitude range as its input. If you clear this parameter, the block avoids overflow by
increasing the word length by one bit after each butterfly multiplication.

Rounding Method — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter specifies the type of rounding mode for internal fixed-point calculations. For more
information about rounding modes, see Rounding Modes (DSP System Toolbox). When the input is
any integer data type or fixed-point data type, the FFT algorithm uses fixed-point arithmetic for
internal calculations. This parameter does not apply when the input is of data type single or
double. Rounding applies to twiddle-factor multiplication and scaling operations.
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Algorithms
The OFDM Demodulator block operation sequence is implemented using these blocks: Ready
Generator, Cyclic Prefix Remover, Sample Repeater, FFT Shifter, FFT, Down Sampler, and Subcarrier
Selector. The parameters shown in this figure configure the behavior of the block.

Ready Generator

This block enables a ready port when you set the OFDM parameters source parameter to Input
port. This ready port controls the input samples based on the maximum FFT length.

The following equations apply.

• Nh = ceil((Nr + FFTLen + CPLen)/vecLen)
• Nl = ceil((Nr + Maximum FFT length + CPLen)/vecLen) – Nh

In these equations,

• Nh is the number of high ready clock cycles
• Nl is the number of low ready clock cycles
• Nr is the number of remaining samples from the previous OFDM symbol. Initially, this value is 0.

In the subsequent operations, the block calculates Nr using the equation, (Nr + FFTLen + CPLen)
- (floor((Nr + FFTLen + CPLen) / vecLen) x vecLen)

• vecLen is the length of the vector

Cyclic Prefix Remover

This block removes CP samples from an OFDM symbol for extracting constellation symbols. The block
performs CP removal based on these parameters: CP length, CP fraction (when enabled), and the
FFT length.

This block supports windowed transmission by implementing fractional cyclic prefix removal.
Windowing reduces out-of-band emissions. A transmitter performs windowing by overlapping the tail
of each OFDM symbol with the head of the next OFDM symbol. A receiver must avoid these
overlapped samples in the FFT calculation. Fractional CP solves this problem by removing part of the
CP at the start of a symbol and the remainder of the CP at the end of the symbol. Implementing a CP-
fraction algorithm also makes this block less sensitive to timing offset.

The block handles the CP in two stages. First, the block calculates the number of CP samples to
remove, Nr, and removes those samples from the input samples. In this case, Nr = CP fraction x CP
length.
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Next, the block calculates the number of samples to shift, Ns, and shifts those samples to the end of
OFDM symbol in the time domain. Where, Ns = CP length – (CP fraction x CP length).

These two segments together make up the total cyclic prefix length, Ncp = Ns + Nr. The CP fraction
parameter controls how many samples the block removes at the beginning of the symbol. The block
shifts the remainder of the cyclic prefix from the start of the symbol to the end of the symbol. The
block quantizes the CP fraction parameter as fi(0,11,10). To achieve an integer number of
samples, the block calculates Nr = floor (Ncp x CP fraction).

For example, if the FFT length is 128 and CP length is 10, the block receives 128 samples plus the
cyclic prefix size.

Sample Repeater

This block repeats FFT-length number of samples until it forms the maximum FFT length. For this
operation, the block buffers the input samples first and then repeats the samples based on the
maximum FFT length value. This repetition mechanism helps to avoid scaling at the FFT block input.
This block is optional and available only when you set the OFDM parameters source parameter to
Input port. When you set the OFDM parameters source parameter to Property, the FFT length
value provided in the block mask is set as the maximum FFT length. The block does not need to
repeat the samples in this context.

For example, if the FFT length is 128 and the maximum FFT length is 2048, each OFDM symbol
consists of 128 samples. The block converts these 128 samples to 2048 samples by repeating the 128
samples 16 times. After the block generates 2048 data samples, it sends data and valid input signals
to the next block.

Time-Domain FFT Shifter

Conventionally, receivers perform the FFT shift in the frequency domain. However, this method
requires memory and introduces latency related to the size of the FFT. Instead, a receiver can
execute the same operation in the time domain by using the frequency shifting property of Fourier
transforms. Shifting a function in one domain corresponds to a multiplication by a complex
exponential function in the other domain. To reduce hardware resources and latency, this block
performs the FFT shift by multiplying the time-domain samples by a complex exponential function.

These equations describe an FFT shift. The equation for an N-point FFT is

X(k) = F[x(n)] = ∑
n = 0

N − 1
x(n)e−

j2πnk
N

For an FFT shift of N/2 carriers in either direction, substitute k = k− N
2 , resulting in

X(k− N
2 ) = ∑

n = 0

N − 1
x(n)e−

j2πn(k− N
2 )

N

This equation simplifies to

X(k− N
2 ) = ∑

n = 0

N − 1
e jπnx(n)e−

j2πnk
N
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Since ∑
n = 0

N − 1
x(n)e−

j2πnk
N  is equivalent to F[x(n)], and e jπ = − 1, this equation simplifies to

X(k− N
2 ) = F[(− 1)nx(n)]

The final equation shows that an FFT shift in the time domain simplifies to multiplication by (–1)n. As
a result, the block implements the FFT shift by multiplying the time-domain samples by either +1 or –
1.

FFT

This block converts a time-domain signal to a frequency-domain signal based on the maximum FFT
length provided for the block. You can provide the FFT length value either through a parameter or
through an input port. The output of the FFT shift subsystem is fed to an FFT block. The block
calculates the maximum FFT for all the FFT length and CP length values.

The Divide butterfly outputs by two parameter sets whether the FFT implements an overall 1/N
scale factor by dividing the output of each butterfly multiplication by two. This adjustment keeps the
output of the FFT in the same amplitude range as its input. When you clear the Divide butterfly
outputs by two parameter, the block avoids overflow by increasing the word length by one bit after
each butterfly multiplication.

Down Sampler

This block down samples maximum-FFT-length number of samples to FFT-length number of samples.
This block is optional and available only when you set the OFDM parameters source parameter to
Input port. When you set the OFDM parameters source parameter to Property, the FFT length
value provided in the block mask sets the maximum FFT length. The block does not need to
downsample the samples in this context.

For example, if the FFT length is 128 and the maximum FFT length is 2048, the input is 2048 samples
and must be downsampled with respective to the FFT length of 128. In this case, the block samples 1
sample for every 16 samples.

Subcarrier Selector

The output subcarriers are categorized into data, DC, and guard subcarriers. Data subcarriers
contains useful data. This block selects subcarriers by removing the number of left guard subcarriers
and right guard subcarriers provided for the block. The number of guard subcarriers to set varies
with standards.

If you select the Remove DC subcarrier parameter, the block excludes the DC subcarrier from
output. The block excludes the DC subcarrier by setting the valid port to 0 (false) for the center cycle
of the output subcarriers.

Latency

The block captures output data at valid cycles based on the type of input: scalar or vector.
Scalar Input

This figure shows a sample output and latency of the OFDM Demodulator block when you specify a
scalar input, set the OFDM parameters source parameter to Property and use default settings for
the other block parameters. In this example, the FFTLen parameter is set to 64, Cyclic prefix
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length parameter is set to 16, Number of left guard subcarriers parameter is set to 6, and
Number of right guard subcarriers parameter is set to 5.

In this example, the latency of the block is calculated using this formula: Cyclic prefix length +
FFTLatency + Number of left guard subcarriers + 12, where FFTLatency is the latency of FFT
block for the specified FFT length, and 12 is the number of pipeline delays.

After calculation, the latency of the block is 207 clock cycles, as shown in the following figure.

This figure shows a sample output and latency of the block when you specify a scalar input and set
the OFDM parameters source parameter to Input port. In this example, the FFTLen port is set
to 64, CPLen port is set to 16, numLgSc port is set to 6 and numRgSc port is set to 5, and
Maximum FFT length parameter is set to 128.

The latency of the block is calculated using the formula CPLen + FFTLen + FFTLatency +
numLgSc x (Maximum FFT length/FFTLen) + 25, where FFTLatency is the latency of FFT block
for the specified maximum FFT length, and 25 is the number of pipeline delays.

After calculation, the latency of the block is 424 clock cycles, as shown in this figure.

The block accepts input only when the ready is 1 (high). In this case, the block captures parameters
on the first cycle when the input valid port is 1 (high).
Vector Input

This figure shows a sample output and latency of the OFDM Demodulator block when you specify a
two-element column vector input and set the OFDM parameters source parameter to Property
and use default settings for the other block parameters. FFTLen is set to 64, Cyclic prefix length is
set to 16, and Number of left guard subcarriers and Number of right guard subcarriers are set
to 6 and 5, respectively.

In this example, the latency of the block is calculated using this formula: floor(Cyclic prefix
length/vecLen) + vecFFTLatency + floor (Number of left guard subcarriers/vecLen) + 12,
where vecFFTLatency is the latency of FFT block for the specified FFT length and vector length,
vecLen is the length of the vector, and 12 is the number of pipeline delays.

This calculation shows that the latency of the block is 142 clock cycles, as shown in this figure.
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This figure shows a sample output and latency of the block when you specify a two-element column
vector input and set the OFDM parameters source parameter to Input port. For this example,
FFTLen is set to 64, CPLen is set to 16, numLgSc is set to 6, numRgSc is set to 5, and Maximum
FFT length is set to 128.

In this example, the latency of the block is calculated using this formula: floor(CPLen/vecLen) +
FFTLen/vecLen + vecFFTLatency + floor(numLgSc/vecLen) x (Maximum FFT length/FFTLen)
+ 26, where vecFFTLatency is the latency of FFT block for the specified maximum FFT length and
vector length, vecLen is the length of the vector, and 26 is the number of pipeline delays.

After calculation, the latency of the block is 266 clock cycles, as shown in this figure.

The block accepts input only when the ready is 1 (high). In this case, the block captures parameters
on the first cycle when the input valid port is 1 (high).

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. The
input data type used in this example for generating HDL code is fixdt(1,16,14).

This table shows the resource and performance data synthesis results when using the block with a
scalar or two-element column vector input for default configuration values. The generated HDL is
targeted to the Xilinx Zynq- 7000 ZC706 evaluation board.

Input Data Slice LUTs Slice Registers DSPs Block RAM Maximum Frequency
in MHz

Scalar 2434 4161 8 1 340
Vector 4890 7764 16 0 235

References
[1] 3GPP TS 36.211 version 14.2.0 Release 14. "Physical channels and modulation." LTE - Evolved

Universal Terrestrial Radio Access (E-UTRA).

[2] "Wireless LAN Medium Access Control (MAC) and Physical layer (PHY) Specifications." IEEE Std
802.11 – 2012.

[3] Stefania Sesia, Issam Toufik, and Matthew baker. LTE - THE UMTS Long Term Evolution from
theory to practice.

[4] Erik Dahlman, Stefan Parkvall, and Johan Skold. 4G - LTE/LTE - Advanced for Mobile broadband
Second edition.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

This block does not have any HDL Block Properties.

See Also
Blocks
OFDM Demodulator Baseband | OFDM Modulator

Objects
comm.OFDMDemodulator

Introduced in R2019b
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RS Decoder
Decode and recover message from RS codeword
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The RS Decoder block decodes and recovers a message from a Reed-Solomon (RS) codeword. The
block accepts codeword data and a samplecontrol bus and outputs a decoded message data, a
samplecontrol bus, whether the received data is corrupted, a block ready indicator, and
(optionally) the number of corrected errors. The block provides an architecture suitable for HDL code
generation and hardware deployment and supports shortened message lengths.

Because, the latency of the block varies, the block provides output port nextFrame that indicates
when the block is ready to accept new input codeword data. For more details about latency, see the
“Algorithms” on page 1-161 section.

You can use this block to model many communication system forward error correcting (FEC) codes.
The block supports digital subscriber line (DSL), WiMAX (802.16 m and e), digital video broadcast
handheld (DVB-H) terminals, digital video broadcast satellite (DVB-S) services, and digital video
broadcast satellite services to handheld (DVB-SH) devices below 3 MHz.

Ports
Input

data — Input codeword data
scalar

Input codeword data, specified as a scalar representing one symbol.

The length of the codeword in symbols specified by the Codeword length (N) parameter must be an
integer equal to 2M – 1, where M is an integer in the range from 3 to 16.

The input data word length must be an unsigned integer equal to ceil(log2(Codeword length (N))).
For a codeword length of 7, the input data word length must be 3.

double and single data types are allowed for simulation, but not for HDL code generation.
Data Types: double | single | uint8 | uint16 | fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.
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• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Output

data — Decoded message data
scalar

Decoded message data, returned as a scalar. This output data width is the same as the input data
width.
Data Types: double | single | uint8 | uint16 | fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

err — Indication of corruption of received data
scalar

Indication of corruption of the received data, returned as a scalar.

When this value is 1 (true), the output contains errors. When this value is 0 (false), the output
contains zero errors.

If the number of errors in the input codeword is greater than (Codeword length (N) – Message
length (K))/2, the block outputs data without correcting the errors and sets the err port to 1 (true)
to indicate that errors that cannot be corrected exist in the input codeword.
Data Types: Boolean

nextFrame — Block ready indicator
scalar

Block ready indicator, returned as a scalar.

The block sets this signal to 1 (true) when the block is ready to accept the start of the next frame. If
the block receives an input ctrl.start signal while nextFrame is 0 (false), the block discards the
frame in progress and begins processing the new data.
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Data Types: Boolean

numErrors — Number of corrected errors
nonnegative scalar

Number of corrected errors, returned as a nonnegative scalar.

The maximum number of errors an RS code can correct is equal to (Codeword length (N) –
Message length (K))/2. If the number of errors in the input codeword is greater than (Codeword
length (N) – Message length (K))/2, the block outputs data without correcting the errors and sets
the numErrors port to 0 to indicate that none of those errors can be corrected.

Dependencies

To enable this port, select the Output number of corrected symbol errors parameter.
Data Types: uint8

Parameters
Codeword length (N) — Length of codeword
7 (default) | range from 7 to 65,535

Specify the codeword length.

The codeword length N must be an integer equal to 2M – 1, where M is an integer in the range from 3
to 16. For more information on representing data for RS codes, see “Integer Format (Reed-Solomon
Only)”.

Message length (K) — Length of message
3 (default) | integer in the range from 3 to (Codeword length (N) – 2)

Specify the message length.

For more information on representing data for RS codes, see “Integer Format (Reed-Solomon Only)”.

Source of primitive polynomial — Primitive polynomial source
Auto (default) | Property

Specify the source of the primitive polynomial.

• Select Auto to specify the primitive polynomial based on the Codeword length (N) parameter
value. The degree of the primitive polynomial is calculated as M = ceil(log2(Codeword length
(N))).

• Select Property to specify the primitive polynomial using the Primitive polynomial parameter.

Primitive polynomial — Primitive polynomial
[1 0 1 1] (default) | binary row vector

Specify a binary row vector representing the primitive polynomial in descending order of powers.

For more information on how to specify a primitive polynomial, see “Primitive Polynomials and
Element Representations”.
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Dependencies

To enable this parameter, set the Source of primitive polynomial parameter to Property.

Source of B, the starting power for roots of the primitive polynomial — Source
of starting power for roots of primitive polynomial
Auto (default) | Property

Specify the source of the starting power for roots of the primitive polynomial.

• Select Auto, to use the default B value parameter value, 1.
• Select Property to enable the B value parameter.

B value — Starting power of roots
1 (default) | positive integer

Specify the starting power for roots of the primitive polynomial.
Dependencies

To enable this parameter, set the Source of B, the starting power for roots of the primitive
polynomial parameter to Property.

Output number of corrected symbol errors — Number of corrected symbol errors
off (default) | on

Select this parameter to enable the numErrors output port. This port outputs the number of
corrected errors.

Algorithms
This figure shows the different stages of operations performed by the RS Decoder block. The block
calculates syndrome values, determines the error location polynomial using Berlekamp-Massey
algorithm, finds error locations and magnitudes using Chien search [5] and Forney [6] algorithms,
respectively, and corrects the errors. For information about Berlekamp-Massey algorithm, see
“Algorithms for BCH and RS Errors-only Decoding”.

Latency

The latency between valid input data and the corresponding valid output data depends on the length
of the codeword and the time the block takes to calculate error locating polynomials and find error
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locations and magnitudes. The time for which the nextFrame port value remains 0 depends on the
processing time of the block. The processing time of the block is equal to the sum of the time the
block takes to compute error locating polynomial (ELPTime) and find error locations and error
magnitudes (ConvTime). The processing time is calculated as this value.

Processing_time = ELPTime + ConvTime
= 4 × t + t(2 × t + 1) + 10 (Pipelining delays)

t is the number of errors an RS code can correct and is equal to (Codeword length (N) – Message
length (K))/2.

The latency of the block is 2ceil (log2Processing_time) + 2 x Codeword length (N) + 2.

This figure shows a sample output of the RS Decoder block with latency according to the DVB-S
standard configuration, and Codeword length (N) and Message length (K) parameter values
specified as 255 and 239, respectively. In this case, when the processing time is less than the
Codeword length (N), the block provides support for a continuous input. The latency of the block is
769 clock cycles.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. The
input data type used for generating HDL code is fixdt(0,8,0).

This table shows the resource and performance data synthesis results when using the block with
Codeword length (N) and Message length (K) parameter values specified as 255 and 239,
respectively. The generated HDL is targeted to the Xilinx Zynq- 7000 ZC706 evaluation board. The
design achieves a clock frequency of 161.5 MHz.

Resource Number Used
LUTs 4098
Registers 2756
DSPs 0
Block RAMs 20
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).
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Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Integer-Output RS Decoder | Integer-Input RS Encoder | RS Encoder

Introduced in R2020a
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NR LDPC Decoder
Decode LDPC code according to 5G NR standard
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The NR LPDC Decoder block implements a low-density parity-check (LDPC) decoder with hardware-
friendly control signals. The block accepts punctured log-likelihood ratio (LLR) values, a stream of
control signals, a base graph number, and lifting sizes. The block outputs decoded bits, a stream of
control signals, lifting sizes, and a signal that indicates when the block is ready to accept new inputs.

This block provides an option to implement layered belief propagation with either the normalized
min-sum approximation algorithm or the min-sum approximation algorithm. This implementation
matches that of the function nrLDPCDecode. You can use this block for channel coding of downlink
and uplink shared channels and paging channel according to 5G new radio (NR) standard TS 38.212
[1].

The NR LDPC Decoder block supports scalar and 64-element column vector inputs. The block
supports the early termination feature to help improve decoding performance and faster convergence
speeds at high signal noise ratio (SNR) conditions. The block enables decoding of multiple code rates
to help achieve high throughput efficiency with a high degree of code rate flexibility. The block
provides an architecture suitable for HDL code generation and hardware deployment. For more
information, see “Algorithms” on page 1-171.

Ports
Input

data — Input LLR values
scalar | vector

Input log-likelihood ratio (LLR) values, specified as a scalar or a column vector of size 64.

The data type of this input must be a signed fixed-point data type with a word length from 4 to 16
bits. For more information on how to specify vector input data, see “Specifying Vector Input” on page
1-169.
Data Types: int8 | int16 | fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.
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• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

bgn — Base graph number
scalar

Base graph number, specified as a scalar. When this value is 0, the block applies bgn 1. When this
value is 1, the block applies bgn 2. For more information about bgn 1 and bgn 2, see section 5.3.2, of
TS 38.212 [1].
Data Types: Boolean

liftingSize — Input lifting size
scalar

Input lifting size, specified as a scalar.

For an invalid liftingSize value, the block discards the current frame and waits for the new frame.
For more information about the supported lifting size values, see section 5.3.2, of TS 38.212 [1].
Data Types: uint16

iter — Number of iterations
scalar

Number of iterations, specified as a integer in the range from 1 to 63.

If you specify iter as a value greater than 63, the block automatically sets the iter value to 8 and
performs the decoding operation.

Dependencies

To enable this port, set the Source for number of iterations parameter to Input port.
Data Types: uint8

numRows — Number of rows
scalar

Number of rows, specified as a scalar.

When you set the bgn value to 0 the block supports the number of rows in the range from 4 to 46.
When you set the bgn value to 1, the block supports the number of rows in the range from 4 to 42.

Dependencies

To enable this port, select the Enable multiple code rates parameter.
Data Types: fixdt(0,6,0)
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Output

data — Decoded output data bits
scalar | vector

Decoded output data bits, returned as a scalar or a column vector of size 64.

The block outputs data bits in a similar format as the input LLR values. Extract these output data bits
in a similar format for further processing.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

liftingSize — Output lifting size
scalar

Output lifting size, returned as a scalar.
Data Types: uint16

nextFrame — Block ready indicator
Boolean scalar

Block ready indicator, returned as a Boolean scalar.

The block sets this signal to 1 (true) when the block is ready to accept the start of the next frame. If
the block receives an input ctrl.start signal while nextFrame is 0 (false), the block discards the
frame in progress and begins processing the new data.
Data Types: Boolean

actIter — Actual number of iterations
scalar

Actual number of iterations the block takes to decode the output, returned as a scalar.
Dependencies

To enable this port, set the Decoding termination criteria parameter to Early.
Data Types: uint8

parityCheck — Parity check status indicator
scalar
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Parity check status indicator, returned as a Boolean scalar. The port indicates the status of the parity
check after the decoding operation.

• 0 — Indicates that the parity check failed
• 1 — Indicates that the parity check passed

Dependencies

To enable this port, select the Enable parity check output port parameter.
Data Types: Boolean

Parameters
Algorithm — Type of algorithm
Min-sum (default) | Normalized min-sum

Select the type of algorithm. For more information, see “Algorithm” (5G Toolbox).

Scaling factor — Scaling factor
0.75 (default) | values in the range from 0.5 to 1, incremented by 0.0625

Specify the scaling factor.

Dependencies

To enable this parameter, set the Algorithm parameter to Normalized min-sum.

Decoding termination criteria — Termination criteria
Max (default) | Early

Select the decoding termination criteria.

• Max — Terminates decoding when the block reaches the number of iterations specified through
the Number of iterations parameter or through the iter input port

• Early — Terminates decoding when all of the parity checks are met or when the block reaches
the maximum number of iterations specified through the Maximum number of iterations
parameter or through the iter input port

Source for number of iterations — Source selection for number of iterations
Property (default) | Input port

Select the source for specifying the number of iterations.

You can set the number of iterations by using either an input port or a parameter.

• Select Property to enable either the Number of iterations parameter or the Maximum
number of iterations parameter.

• Select Input port to enable the iter port.

Number of iterations — Number of iterations
8 (default) | integer in the range from 1 to 63

Specify the number of iterations.
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Dependencies

To enable this parameter, set the Decoding termination criteria parameter to Max and the Source
for number of iterations parameter to Property.

Maximum number of iterations — Maximum number of iterations
8 (default) | integer in the range from 1 to 63

Specify the maximum number of iterations.

Dependencies

To enable this parameter, set the Decoding termination criteria parameter to Early and the
Source for number of iterations parameter to Property.

Enable multiple code rates — Multiple code rates
off (default) | on

Select this parameter to enable the numRows input port to support multiple code rates. For more
information about multiple code rates, see “Multiple Code Rates” on page 1-170.

Enable parity check output port — Parity check status
off (default) | on

Select this parameter to enable the parityCheck output port to view the status of the parity check.

More About
Specifying Vector Input

Vector input data for the block must be specified as a column vector of size 64. You must provide
inputs as an integer number of ceil(liftingSize/64) clock cycles.

The total number of clock cycles that the block requires to receive a frame of LLR values for decoding
is equal to n x ceil(liftingSize/64), where n is the number of columns in the parity check matrix. n
depends on the base graph number, specified by the bgn input port. When the bgn port value is 0,
the block sets n to 66. When the bgn port value is 1, the block sets n to 50.

These sections show how the block accepts input LLR values based on the liftingSize and bgn port
values.

liftingSize input value is less than 64 and bgn value is 0

For a liftingSize input value of 2 and bgn input value of 0, the block can accept 132 LLRs. In this
case, the block accepts the first two LLR input bits in each clock cycle and ignores the remaining 62
elements in that clock cycle. The total number of clock cycles the block requires to receive a frame of
LLR values is 66.

The Ln elements represent LLR bits, and the X elements represent ignored values.

Input LLR
Values

Number of Clock Cycles
1 Clock Cycle 2 Clock Cycles 3 Clock Cycles 4 Clock Cycles ... 66 Clock

Cycles
data[0] L0 L2 L4 L6 ... L130
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Input LLR
Values

Number of Clock Cycles
1 Clock Cycle 2 Clock Cycles 3 Clock Cycles 4 Clock Cycles ... 66 Clock

Cycles
data[1] L1 L3 L5 L7 ... L131

... X X X X X X
data[63] X X X X X X

liftingSize input value is greater than 64 and bgn value is 0

For a liftingSize input value of 104 and bgn input value of 0, the block can accept 6,864 LLRs. In
this case, the block accepts 104 LLR values in two clock cycles: 64 LLRs in the first clock cycle and
40 LLRs in the second clock cycle. The block ignores the remaining 24 elements in the second clock
cycle. The total number of clock cycles the block requires to receive input LLR values is 132.

The Ln elements represent LLR bits, and the X elements represent ignored values.

Input
LLR
Values

Number of Clock Cycles
1 Clock
Cycle

2 Clock
Cycles

3 Clock
Cycles

4 Clock
Cycles

... ... 131
Clock
Cycles

132
Clock
Cycles

data[0] L0 L64 L104 L168 ... ... L6760 L6824

data[1] L1 L65 L105 L169 ... ... L6761 L6825

 ... ... ...  ... ... ... ...
... ... L103 ... L207 ... ... ... L6863

... ... X ... X ... ... ... X
data[63
]

L63 X L167 X ... ... L6823 X

Multiple Code Rates

NR LDPC codes can support flexible code rates based on the parity check matrix (PCM) extension to
achieve high throughputs and meet low latency requirements. The block supports multiple code rates
by varying the number of rows of the parity check matrix.

For LDPC codes, the base parity check matrix (Hb) is a product of the number of rows (mb) and the
number of columns (nb) of the matrix. The output (K) of the block is calculated as kb x Z, where Z is
the expansion factor or lifting size that can be in the range from 2 to 384, and kb is equal to 22 for
bgn value 0 and 10 for bgn value 1 as defined in the standard [1].

The input size (N) is calculated as, nb x Z, where nb is equal to mb + kb.

This figure shows a parity check matrix marked with a specified number of rows and columns, which
you can use to calculate the code rates of the block. The code rate R is calculated as, kb / (kb – 2 + mb)
for the specified bgn value. In this figure, the values nb1, nb2, and nb3 indicate the number of columns
for the specified bgn value and values mb1, mb2, and mb3 indicate the number of rows for the specified
bgn value.
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Algorithms
This figure shows the architecture block diagram of the NR LDPC Decoder block. The Controller
block controls the layer and iteration count of the decoding process. The Variable node RAM block
stores the variable node (VN) messages, and Check node RAM block stores the check node messages
(CN). The Functional Unit block calculates the variable node (VN) messages and check node (CN)
messages based on the layered belief propagation and either the normalized min-sum approximation
algorithm or the min-sum approximation algorithm. The Termination/Parity check status block
calculates the parity checks and provides the parity check status after each iteration. For more
information about decoding algorithms, see “Algorithm” (5G Toolbox).
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The implementation of the block matches the performance of the function nrLDPCDecode.

This plot shows the performance of the block for a 4-bit LLR input when you set the Algorithm
parameter to Min-sum.
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This plot shows the performance of the block for a 4-bit LLR input when you set the Algorithm
parameter to Normalized min-sum .
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This plot shows the average number of iterations taken to decode the data per EbNo for a 4-bit LLR
input when you set the Algorithm parameter to Min-sum and the Decoding termination criteria
parameter to Early.
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Latency

The latency of the block varies based on the values of the bgn, liftingSize, and numRows input
ports and the number of iterations. Because the latency varies, use the nextFrame control signal
output port to determine when the block is ready for a new input frame.

Scalar Input

The latency of the block is equal to r x (t + (m x 8) x ceil(liftingSize/64) + t + m x (7 –
ceil(liftingSize/64))) + (n x liftingSize) + 18. In this calculation, r is the number of iterations, n is
the number of columns in the parity check matrix, t is twice the total number of non –1 elements in
the parity check matrix, m is the number of rows in the parity check matrix, and d is the pipeline
delays. When you select the Enable multiple code rates parameter, d is 26. Otherwise, d is 18.

This figure shows a sample output of the NR LDPC Decoder block with latency. In this case, the bgn
and liftingSize input port values are set to 0 and 128, respectively, and the Number of iterations
parameter is set to 8. The latency of the block is 31,362 clock cycles.
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Vector Input

For vector inputs, the latency of the block is equal to r x (t + (m x 9)) + n x (ceil(liftingSize/64)) +
d. In this calculation, r is the number of iterations, n is the number of columns in the parity check
matrix, t is twice the total number of non -1 elements in the parity check matrix, m is the number of
rows in the parity check matrix, and d is the pipeline delays. When you select the Enable multiple
code rates parameter, d is 26. Otherwise, d is 18.

This figure shows a sample output of the NR LDPC Decoder block with latency. In this case, the bgn
and liftingSize input port values are set to 0 and 384, respectively, and the Number of iterations
parameter is set to 8. The latency of the block is 8,782 clock cycles.

This figure shows a sample output of the NR LDPC Decoder block with latency. In this case, the bgn,
liftingSize, and numRows input port values are set to 0, 384, and 4, respectively, and the Number
of iterations parameter is set to 8. The latency of the block is 1,674 clock cycles.
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Throughput

The throughput of the block is calculated as (cwLen / latency) x fmax. In this calculation:

• cwLen is the code word length which is equal to kb x Z, where kb is 22 for the bgn value 0 and 10
for the bgn value 1.

• latency is the latency of the block for the specified configuration
• fmax is the maximum operating frequency

For more information about the latency calculation, see “Latency” on page 1-175. For more
information about the maximum operating frequency, see “Performance” on page 1-178.

This plot shows the throughput versus the number of rows specified at the block input, when you set
the Algorithm parameter to Min-sum, the Number of iterations parameter to 8, and the bgn input
port to 0.
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Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
varies based on the type of algorithm and the word length of the input LLR values.

This table shows the resource and performance data synthesis results of the block, when you set the
Algorithm parameter to Min-sum, set the Number of iterations parameter to 8, and specify the
input LLR values of data type fixdt(1,4,0). The generated HDL is targeted to the Xilinx
ZynqUltrascale+™ RFSoC evaluation board.

Input Data Slice LUTs Slice Registers Block RAMs Maximum Frequency in
MHz

Scalar 45461 58331 192.5 291
Vector 67410 75217 128.5 291.5

This table shows the resource and performance data synthesis results of the block for the vector
input when you set the Algorithm parameter to Min-sum, set the Decoding termination criteria
parameter to Max, set the Number of iterations parameter to 8, select the Enable multiple code
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rates parameter, and specify the input LLR values of data type fixdt(1,4,0). The generated HDL
is targeted to the Xilinx ZynqUltrascale+ RFSoC evaluation board.

Slice LUTs Slice Registers Block RAMs Maximum Frequency in
MHz

74406 76087 128.5 275
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

 NR LDPC Decoder

1-179



See Also
Blocks
NR LDPC Encoder

Functions
nrLDPCDecode | nrLDPCEncode

Introduced in R2020a
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NR LDPC Encoder
Perform LDPC encoding according to 5G NR standard
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The NR LPDC Encoder block implements a low-density parity-check (LDPC) encoder with hardware-
friendly control signals. The block accepts data bits, a stream of control signals, a base graph
number, and lifting sizes. The block outputs encoded bits, a stream of control signals, lifting sizes,
and a signal that indicates when the block is ready to accept new inputs.

The block functionality matches that of the function nrLDPCEncode. You can use this block for
channel coding of downlink and uplink shared channels and paging channel according to 5G new
radio (NR) standard TS 38.212 [1].

The block supports scalar and vector inputs. The block provides an architecture suitable for HDL
code generation and hardware deployment. For more information, see “Algorithms” on page 1-184.

Ports
Input

data — Input data bits
scalar | vector

Input data bits, specified as a scalar or a column vector of size 64.

For more information on how to specify vector input data, see “Specifying Vector Input” on page 1-
183.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus
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bgn — Base graph number
scalar

Base graph number, specified as a scalar. When this value is 0, the block applies bgn 1. When this
value is 1, the block applies bgn 2. For more information about bgn 1 and bgn 2, see section 5.3.2, of
TS 38.212 [1].
Data Types: Boolean

liftingSize — Input lifting size
scalar

Input lifting size, specified as a scalar.

For an invalid liftingSize value, the block discards the current frame and waits for the new frame.

For more information about the supported lifting size values, see section 5.3.2, of TS 38.212 [1].
Data Types: uint16

Output

data — Encoded output data bits
scalar | vector

Encoded output data bits, returned as a scalar or a column vector of size 64.

The block outputs data bits in a similar format as the input data bits.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

liftingSize — Output lifting size
scalar

Output lifting size, returned as a scalar.
Data Types: uint16

nextFrame — Ready for new inputs
scalar
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The block sets this signal to 1 when the block is ready to accept the start of the next frame. If the
block receives an input start signal while nextFrame is 0, the block discards the frame in progress
and begins processing the new data.

For more information, see “Using the nextFrame Output Signal”.
Data Types: Boolean

More About
Specifying Vector Input

Vector input data for the block must be specified as a column vector of size 64. You must provide
inputs as an integer number of ceil(liftingSize/64) clock cycles.

The total number of clock cycles that the block requires to receive a frame of data bits for encoding is
equal to n x ceil(liftingSize/64), where n is the number of columns in the parity check matrix. n
depends on the base graph number, specified by the bgn input port. When the bgn port value is 0,
the block sets n to 22. When the bgn port value is 1, the block sets n to 10.

These sections show how the block accepts input data bits based on the liftingSize and bgn port
values.

liftingSize input value is less than 64 and bgn value is 0

For a liftingSize input value of 2, the block accepts the first two data input bits in each clock cycle
and ignores the remaining 62 elements in that clock cycle. The total number of clock cycles the block
requires to receive input data bits is 22.

The Dn elements represent data bits, and the X elements represent ignored values.

Input
data bits

Number of Clock Cycles
1 Clock
Cycle

2 Clock
Cycles

3 Clock
Cycles

4 Clock
Cycles

... 21 Clock
Cycles

22 Clock
Cycles

data[0] D0 D2 D4 D6 ... ... D42

data[1] D1 D3 D5 D7 ... ... D43

... X X X X X X X

... X X X X X X X
data[63] X X X X X X X

liftingSize input value is greater than 64 and bgn value is 0

For a liftingSize input value of 104, the block accepts 104 data bits in two clock cycles: 64 data bits
in the first clock cycle and 40 data bits in the second clock cycle. The block ignores the remaining 24
elements in the second clock cycle. The total number of clock cycles the block requires to receive
input data bits is 44.

The Dn elements represent data bits, and the X elements represent ignored values.

 NR LDPC Encoder

1-183



Input
data bits

Number of Clock Cycles
1 Clock
Cycle

2 Clock
Cycles

3 Clock
Cycles

4 Clock
Cycles

... ... 43 Clock
Cycles

44 Clock
Cycles

data[0] D0 D64 D104 D168 ... ... D2184 D2248

data[1] D1 D65 D105 D169 ... ... D2185 D2249

 ... ... ...  ... ... ... ...
... ... D103 ... D207 ... ... ... D2287

... ... X ... X ... ... ... X
data[63
]

D63 X D167 X ... ... D2247 X

Algorithms
This figure shows the architecture block diagram of the NR LDPC Encoder block.

The architecture consists of Controller, Check Matrix LUT, Shifter, Memory, Nonnegative Position
Selector, and XOR Unit blocks. The Controller block controls the data flow to and from the Memory
block and provides control signals to control the functionality of all of these blocks. The Check Matrix
LUT block consists of 5G NR LDPC standard [1] parity check matrix values. Based on the bgn and
liftingSize input port values, the Check Matrix LUT block provides input to the Shifter block. The
Systematic Parity Generator block generates parity bits for the first four rows of the parity check
matrix and uses those generated parity bits to calculate the parity bits for the remaining rows of the
parity check matrix. The Nonnegative Position Selector block selects the nonnegative positions of the
parity check matrix. The XOR Unit block performs the modulo operation by completing the encoding
operation.
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Latency

The latency of the block varies based on the values of the bgn and liftingSize input ports. Because
the latency varies, use the nextFrame control signal to determine when the block is ready for a new
input frame.

Scalar Input

This figure shows a sample output of the NR LDPC Encoder block with latency. In this case, the bgn
and liftingSize input port values are set to 1 and 384, respectively. The latency of the block is 1,840
clock cycles.

Vector Input

This figure shows a sample output of the NR LDPC Encoder block with latency. In this case, the bgn
and liftingSize input port values are set to 0 and 384, respectively. The latency of the block is 1,911
clock cycles.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options.

This table shows the resource and performance data synthesis results. The generated HDL is
targeted to the Xilinx Zynq- 7000 ZC706 evaluation board.
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Input Data Slice LUTs Slice Registers Block RAMs Maximum Frequency in
MHz

Scalar 6748 7084 2.5 431
Vector 7951 8504 3.5 430

References
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Technical Specification Group Radio Access Network.

[2] Gallager, R. “Low-Density Parity-Check Codes.” IEEE Transactions on Information Theory 8, no. 1
(January 1962): 21–28. www.doi.org/10.1109/TIT.1962.1057683.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.
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See Also
Blocks
NR LDPC Decoder

Functions
nrLDPCEncode | nrLDPCDecode

Introduced in R2020a
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OFDM Modulator
Modulate frequency-domain OFDM subcarriers to time-domain samples for custom communication
protocols
Library: Wireless HDL Toolbox / Modulation

Description
The OFDM Modulator block modulates frequency-domain orthogonal frequency division multiplexing
(OFDM) subcarriers to time-domain samples based on the OFDM parameters. The block supports 5G
new radio (NR) standard, long term evolution (LTE) [1], wireless local area network (WLAN
802.11a/g/n/ac) [2], WiMAX, digital video broadcast (DVB), and digital audio broadcast (DAB)
standards.

The block accepts input data along with a valid control signal and these OFDM parameters: FFT
length, CP length, and the number of right and left guard subcarriers. The block outputs modulated
data along with valid and ready controls signals. The block samples the corresponding OFDM
parameters only when the ready port is 1 (high) and when the first valid port of each OFDM symbol
is 1 (high).

The block supports scalar and vector inputs. You can use a vector input to increase the data
throughput and achieve a giga-sample-per-second (GSPS) throughput. The block supports windowing
for scalar and vector inputs to reduce the spectral regrowth, or adjacent channel leakage ratio
(ACLR), of an OFDM signal. The block provides an interface and architecture suitable for HDL code
generation and hardware deployment.

Ports
Input

data — Input data
scalar | column vector

Input data, specified as a scalar or column vector of real or complex values. The vector size must be a
power of 2 and in the range from 1 to 64, and less than or equal to the FFT length. For more
information on how to specify vector inputs, see “Specifying Vector Input” on page 1-193.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid input data
scalar

Indicates valid input data, specified as a scalar.

1 Blocks

1-188



This port is a control signal that indicates when the sample from the data input port is valid. When
this value is 1, the block captures the values on the data input port. When this value is 0, the block
ignores the values on the data input port.
Data Types: Boolean

FFTLen — Length of FFT
scalar

Length of the FFT, specified as a scalar. The FFT length must be power of 2 and in the range from 8
to 65,536. This value must be less than or equal to the Maximum FFT length parameter value.

To support the minimum FFT length of 8, the FFTLen data type must be fixdt(0,k,0), where k is
greater than or equal to 4.

Dependencies

To enable this port, set the OFDM parameters source parameter to Input port.
Data Types: single | double | uint8 | uint16 | uint32 | unsigned fixed point

CPLen — Length of cyclic prefix
scalar

Length of the cyclic prefix, specified as a scalar in the range from 0 to FFTLen.

To support the minimum FFT length of 8, the CPLen data type must be fixdt(0,k,0), where k is
greater than or equal to 4.

Dependencies

To enable this port, set the OFDM parameters source parameter to Input port.
Data Types: single | double | uint8 | uint16 | uint32 | unsigned fixed point

numLgSc — Number of left guard carriers of OFDM symbol
scalar

Number of left guard carriers of the OFDM symbol, specified as a scalar in the range from 0 to
(FFTLen/2) – 1.

To support the minimum FFT length of 8, the numLgSc data type must be fixdt(0,k,0), where k
is greater than or equal to 2.

Dependencies

To enable this port, set the OFDM parameters source parameter to Input port.
Data Types: single | double | uint8 | uint16 | uint32 | unsigned fixed point

numRgSc — Number of right guard carriers of OFDM symbol
scalar

Number of right guard carriers of the OFDM symbol, specified as a scalar in the range from 0 to
(FFTLen/2) – 1.

To support the minimum FFT length of 8, the numRgSc data type must be fixdt(0,k,0), where k
is greater than or equal to 2.
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Dependencies

To enable this port, set the OFDM parameters source parameter to Input port.
Data Types: single | double | uint8 | uint16 | uint32 | unsigned fixed point

reset — Clear internal states
scalar

Clear internal states, specified as a Boolean scalar. When this value is 1, the block stops the current
calculation and clears all internal states.

Dependencies

To enable this port, select the Enable reset input port parameter.
Data Types: Boolean

winLen — Length of window
scalar

Length of the window for overlap-adding of adjacent OFDM symbols, specified as a scalar in the
range from 1 to Maximum window length.

Dependencies

To enable this port, set the OFDM parameters source parameter to Input port.
Data Types: single | double | uint8 | uint16 | uint32 | unsigned fixed point

Output

data — Modulated output data
scalar | column vector

Modulated output data, returned as a complex-valued scalar or column vector. The data type this
output is dependent on the data type of the input data port.

• When you set the OFDM parameters source parameter to Property and clear the Divide
butterfly outputs by two parameter, the output word length increases by log2(FFT length) bits.

• When you set the OFDM parameters source parameter to Input port and clear the Divide
butterfly outputs by two parameter, the output word length increases by log2(Maximum FFT
length) bits.

To avoid overflow, select the Divide butterfly outputs by two parameter.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid output data
scalar

Indicates valid output data, returned as a scalar.

This port is a control signal that indicates when the data output port is valid. The block sets this
value to 1 when the data samples are available on the data output port.
Data Types: Boolean
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ready — Indicates block is ready
scalar

Indicates block is ready, returned as a scalar.

This is a control signal that indicates when the block is ready for new input data. When this value is
1, the block accepts input data in the next time step. When this value is 0, the block ignores input
data in the next time step.
Data Types: Boolean

Parameters
Main

OFDM parameters source — Source of OFDM parameters
Property (default) | Input port

You can set OFDM parameters with an input port or by selecting a value for the parameter.

Select Property to enable the FFT length, Cyclic prefix length, Number of left guard
subcarriers, and Number of right guard subcarriers parameters.

Select Input port to enable the FFTLen, CPLen, numLgSc, and numRgSc input ports and the
Maximum FFT length parameter. The Maximum FFT length parameter sets the upper bound of
the range of valid values for the FFTLen input port.

Maximum FFT length — Maximum length of FFT length
64 (default) | power of 2 in range from 8 to 65,536

Specify the maximum length of the FFT.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Input port.

FFT length — Length of FFT
64 (default) | power of 2 in range from 8 to 65, 536

Specify the FFT length.

When you set the OFDM parameters source parameter to Property, the block uses the FFT
length value as the maximum FFT length.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Property.

Cyclic prefix length — Length of cyclic prefix
16 (default) | integer in range from 0 to FFT length

Specify the length of the cyclic prefix.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Property.

 OFDM Modulator

1-191



Number of left guard subcarriers — Number of guard band subcarriers in left extreme
of OFDM symbol
6 (default) | integer in range from 0 to (FFT length/2) – 1

Specify the number of left guard subcarriers.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Property.

Number of right guard subcarriers — Number of guard band subcarriers in right
extreme of OFDM symbol
5 (default) | integer in range from 0 to (FFT length/2) – 1

Specify the number of right guard subcarriers.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Property.

Insert DC Null — Option to insert DC null
on (default) | off

Select this parameter to insert a null on the DC subcarrier.

Enable reset input port — Reset signal
off (default) | on

Select this parameter to enable the reset input port.

Windowing — Spectral growth reduction
off (default) | on

Select this parameter to perform a windowing operation that reduces spectral growth based on the
specified window length. Clear this parameter to disable the windowing operation. For more
information about windowing, see “Windowing” on page 1-199.

Window length — Length of window
4 (default) | even integer in range from 1 to Cyclic prefix length

Specify the window length to overlap-add adjacent OFDM symbols.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Property and select the
Windowing parameter.

Maximum window length — Maximum length of window
8 (default) | integer in the range from 1 to CPLen

Specify the maximum window length.

Dependencies

To enable this parameter, set the OFDM parameters source parameter to Input port and select
the Windowing parameter.
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IFFT Parameters

Divide butterfly outputs by two — Divide FFT butterfly outputs by two
on (default) | off

This parameter controls the scaling option of the IFFT block inside the OFDM Modulator block.

When you select this parameter, the FFT implements an overall 1/N scale factor by dividing the
output of each butterfly multiplication by two. This adjustment keeps the output of the IFFT in the
same amplitude range as its input. If you clear this parameter, the block avoids overflow by
increasing the word length by one bit after each butterfly multiplication.

Rounding Method — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter specifies the type of rounding mode for internal fixed-point calculations. For more
information about rounding modes, see Rounding Modes (DSP System Toolbox). When the input is
any integer data type or fixed-point data type, the FFT algorithm uses fixed-point arithmetic for
internal calculations. This parameter does not apply when the input is of data type single or
double. Rounding applies to twiddle-factor multiplication and scaling operations.

More About
Specifying Vector Input

The OFDM Modulator block accepts active input subcarriers, which are calculated using the formula
FFT length - (Number of left guard subcarriers + Number of right guard subcarriers +
Insert DC Null). When you specify a vector input, if the number of active input subcarriers are
insufficient to accommodate the vector length of data samples, you must pad zeros to the input to
make it a complete vector. For example, if the number of active data subcarriers is 62, and the vector
length is 16, you can specify the 48 data samples in 3 valid cycles and the remaining 14 data samples
in the 4th valid cycle by padding two zeros to match the vector length of 16. If the number of active
data subcarriers is 64, and the vector length is 16, you can specify the complete data samples in 4
valid cycles.

The block outputs Cyclic prefix length + FFT length number of samples. If the output data samples
returned are insufficient to accommodate the vector length, the block stores the remaining samples
and outputs them along with the data samples in the first valid cycle of the next data symbol. For
example, if the number of data samples to be returned is 62, and the specified vector length is 16, the
block returns 48 data samples in 3 valid cycles, stores the remaining 14 data samples and outputs
them in the first output valid cycle of the next data symbol. If the number of data samples to be
returned is 64, and the specified vector length is 16, the block returns data samples in 4 valid cycles.

Example 1

For a vector input of size 32 with block parameter FFT length set to 64, Cyclic prefix length set to
16, Number of left guard subcarriers set to 6, Number of right guard subcarriers set to 5, and
Insert DC Null set to off, the block accepts 53 active data subcarriers.

In the figure, D1 and D2 indicate the active data subcarriers, Z indicates padded zeros, and S1 and
S2 indicate modulated output data symbols.
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To provide 53 active data subcarriers of vector length 32, two cycles are needed. In this case, you
must send the first set of data samples as D1(1:32), send the second set of data samples as D1(33:53),
and pad the remaining samples with zeros Z(1:11) to make the complete vector. Similarly, the block
processes D2 based on the block parameter values.

The block outputs Cyclic prefix length + FFT length number of samples, which means 80 data
samples in this example. In the figure, S1(1:16) contains the added cyclic prefix, and S1(17:80)
contains the data samples of the first data symbol S1, which is returned as S1(17:32), S1(33:64), and
the remaining 16 data samples S1(65:80) stored and returned at the first valid cycle of the second
data symbol S2. Similarly, the block outputs S2 based on the block parameter values as shown in the
figure.

Example 2

For a vector input of size 32 with block inputs FFTLen, CPLen, numLgSc, and numRgSc specified
as 128, 10, 28, and 27, respectively, at the first valid high cycle and with the Insert DC Null
parameter cleared, the block accepts 73 active data subcarriers.

In the figure, D1 and D2 indicate the active data subcarriers, Z indicates padded zeros, and S1 and
S2 indicate modulated output data symbols.
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To provide 73 active data subcarriers of vector length 32, three cycles are needed. In this case, you
must send the first set of data samples as D1(1:32), send the second set of data samples as D1(65:96),
send the third set of data samples as D1(65:72), and pad the remaining samples with zeros Z(1:24) to
make the complete vector. Similarly, the block processes D2 based on the port values.

The block outputs Cyclic prefix length + FFT length number of samples, which means 138 data
samples in this example. In the figure, the output S1(1:10) contains the added cyclic prefix, and
S1(11:138) contains the data samples of the first data symbol S1, which is returned as S1(11:32),
S1(33:64), S1(65:96), S1(97:128), and the remaining 10 data samples S1(129:138) stored and
returned at the first valid cycle of the second data symbol S2. Similarly, the block outputs S2 based on
the port values shown in the figure.

Algorithms
The OFDM Modulator block operation sequence is implemented using these blocks: Ready Generator,
Symbol Formation, Sample Repeater, IFFT, FFT Shifter, Down Sampler, CP Addition, and Windowing.
The windowing feature is supported for scalar and vector inputs. The parameters shown in this figure
configure the behavior of the block.
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Ready Generator

The Ready Generator subsystem controls input data samples by calculating the number of active data
subcarriers based on these input OFDM parameters: FFT length, CP length, number of left and right
guard carriers, and DC null insertion status.

When you set the OFDM parameters source parameter to Property, these equations apply.

• Nh = ceil((FFT length – (Number of left guard subcarriers + Number of right guard
subcarriers + Insert DC Null))/vecLen)

• Nl = ceil((FFT length + Cyclic prefix length))/vecLen) – Nh

When you set the OFDM parameters source parameter to Input port, these equations apply.

• Nh = ceil((FFTLen – (numLgSc + numRgSc + Insert DC Null))/vecLen)
• Nl = ceil((Maximum FFT length + CPLen))/vecLen) – Nh

In these equations,

• Nh is the number of high ready clock cycles
• Nl is the number of low ready clock cycles
• vecLen is the length of the vector

This figure shows the ready signal generation for the default block configuration (FFT length = 64,
Cyclic prefix length = 16, Number of left guard subcarriers = 6, Number of right guard
subcarriers = 5 and Insert DC Null = on) with a scalar input.

This figure shows the ready signal generation for the default block configuration (FFT length = 64,
Cyclic prefix length = 16, Number of left guard subcarriers = 6, Number of right guard
subcarriers = 5 and Insert DC Null = on) with a four-element column vector input.
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Symbol Formation

The block stores input valid active subcarrier data, reads it, and forms a symbol of FFT length by
placing the data at the center, and guard subcarriers at the edges of the symbol based on the number
of left and right guard subcarrier values provided.

Sample Repeater

This block repeats FFT-length number of samples until it forms the maximum FFT length. For this
operation, the block buffers the input samples first and then repeats the samples based on the
maximum FFT length value. This repetition mechanism helps to avoid scaling at the FFT block input.
This block is optional and available only when you set the OFDM parameters source parameter to
Input port. When you set the OFDM parameters source parameter to Property, the FFT length
value provided in the block mask is set as the maximum FFT length. The block does not need to
repeat the samples in this context.

For example, if the FFT length is 128 and the maximum FFT length is 2048, each OFDM symbol
consists of 128 samples. The block converts these 128 samples to 2048 samples by repeating the 128
samples 16 times. After the block generates 2048 data samples, it sends data and valid input signals
to the next block.

IFFT

The IFFT block converts a frequency-domain signal to a time-domain signal. The block supports the
FFT length as a power of 2, in the range from 8 to 65, 536.

The Divide butterfly outputs by two parameter sets whether the FFT implements an overall 1/N
scale factor by dividing the output of each butterfly multiplication by two. This adjustment keeps the
output of the IFFT in the same amplitude range as its input. When you clear the Divide butterfly
outputs by two parameter, the block avoids overflow by increasing the word length by 1 bit after
each butterfly multiplication.

Time-Domain FFT Shifter

Conventionally, transceivers perform an FFT shift in the frequency domain. However, this method
requires memory and introduces latency related to the size of the FFT. Instead, a transceiver can
execute the same operation in the time domain by using the frequency shifting property of Fourier
transforms. Shifting a function in one domain corresponds to a multiplication by a complex
exponential function in the other domain. To reduce hardware resources and latency, this block
performs the FFT shift by multiplying the time-domain samples by a complex exponential function.

These equations describe an FFT shift. The equation for an N-point FFT is
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X(k) = F[x(n)] = ∑
n = 0

N − 1
x(n)e−

j2πnk
N

For an FFT shift of N/2 carriers in either direction, substitute k = k− N
2 , resulting in

X(k− N
2 ) = ∑

n = 0

N − 1
x(n)e−

j2πn(k− N
2 )

N

This equation simplifies to

X(k− N
2 ) = ∑

n = 0

N − 1
e jπnx(n)e−

j2πnk
N

Since ∑
n = 0

N − 1
x(n)e−

j2πnk
N  is equivalent to F[x(n)], and e jπ = − 1, this equation simplifies to

X(k− N
2 ) = F[(− 1)nx(n)]

The final equation shows that an FFT shift in the time domain simplifies to multiplication by (-1)n.
Therefore, the block implements the FFT shift by multiplying the time-domain samples by either +1
or –1.

Down Sampler

This block down samples the maximum FFT length number of samples to FFT length number of
samples. This block is optional and available only when the OFDM parameters source parameter is
set to Input port. When OFDM parameters source is set to Property, the FFT length value
provided in the block mask is considered as the maximum FFT length. So, there is no need to
downsample the samples in this context.

For example, the block is operating with FFT length as 128 and the maximum FFT length is 2048.
Here, the input is 2048 samples and it must be downsampled with respective to the FFT length 128.
So, the block samples 1 sample for every 16 samples.

CP Addition

Cyclic prefix addition is the process of adding the last samples of an OFDM symbol as a prefix to each
OFDM symbol. This figures shows CP addition for an OFDM symbol with Nfft samples and CP
samples NCP.
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When the OFDM Modulator block operates through Input portselection, it uses the Maximum
FFT length parameter to avoid multiple IFFTs.

Windowing

Windowing reduces the spectral regrowth, or adjacent channel leakage ratio (ACLR), of an OFDM
signal. Windowing is optional and supports scalar and vector inputs. To enable windowing, select the
Windowing parameter.

The blocks performs windowing on the CP-added OFDM symbols. For more information about
windowing, see the OFDM Modulator Baseband block.

Latency

The latency of the block varies with the type of input: scalar or vector.

Scalar Input

This figure shows a sample output and latency of the OFDM Modulator block when you specify a
scalar input, set the OFDM parameters source parameter to Property and use default settings for
the other block parameters. FFT length is set to 64, Cyclic prefix length is set to 16, Insert DC
null status is set to on, and Number of left guard subcarriers and Number of right guard
subcarriers are set to 6 and 5, respectively.

In this example, the latency of the block is calculated using this formula: FFT length – (Number of
left guard subcarriers + Number of right guard subcarriers + Insert DC null status) +
IFFTLatency + FFT length + 22, where IFFTLatency is the latency of IFFT block for the specified
FFT length, and 22 is the number of pipeline delays.

This calculation shows that the latency of the block is 311 clock cycles, as shown in this figure.

This figure shows a sample output and latency of the block when you specify a scalar input and set
the OFDM parameters source parameter to Input port. For this example, FFTLen is set to 64,
CPLen is set to 16, Insert DC null status is set to on, numLgSc and numRgSc are set to 6 and 5,
respectively, and Maximum FFT length is set to 128.

In this example, the latency of the block is calculated using this formula: FFTLen – (numLgSc +
numRgSc + Insert DC null status) + FFT length + IFFTLatency + Maximum FFT length +
(Maximum FFT length/FFTLen – 1) + 32, where IFFTLatency is the latency of IFFT block for the
specified maximum FFT length, and 32 is the number of pipeline delays.

This calculation shows that the latency of the block is 582 clock cycles, as shown in this figure.
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The block accepts input only when the ready signal is 1 (high). In this case, the block captures
parameters on the first cycle when the input valid signal is 1 (high).

Vector Input

This figure shows a sample output and latency of the OFDM Modulator block when you specify an
eight-element column vector input, set the OFDM parameters source parameter to Property and
use default settings for the other block parameters. FFT length is set to 64, Cyclic prefix length is
set to 16, Insert DC null status is set to on, and Number of left guard subcarriers and Number
of right guard subcarriers are set to 6 and 5, respectively.

In this example, the latency of the block is calculated using this formula: ceil((FFT length –
(Number of left guard subcarriers + Number of right guard subcarriers + Insert DC null
status))/vecLen) + vecIFFTLatency + ceil(FFT length/vecLen) + 22, where vecIFFTLatency is the
latency of IFFT block for the specified FFT length and vector length, vecLen is the length of the
vector, and 22 is the number of pipeline delays.

This calculation shows that the latency of the block is 104 clock cycles, as shown in this figure.

This figure shows a sample output and latency of the OFDM Modulator block when you specify an
eight-element column vector input and set the OFDM parameters source parameter to Input
port. For this example, FFTLen is set to 64, CPLen is set to 16, Insert DC null status is set to on,
numLgSc and numRgSc are set to 6 and 5, respectively, and Maximum FFT length is set to 128.

In this example, the latency of the block is calculated using this formula: ceil((FFTLen – (numLgSc
+ numRgSc + Insert DC null status))/vecLen) + FFTLen/vecLen + vecIFFTLatency +
floor((Maximum FFT length/FFTLen) * (vecLen – 1)/vecLen) + ceil(Maximum FFT length/
vecLen) – (Maximum FFT length/FFTLen – 1) + 32, where vecIFFTLatency is the latency of IFFT
block for the specified maximum FFT length and vector length, vecLen is the length of the vector, and
32 is the number of pipeline delays.

This calculation shows that the latency of the block is 160 clock cycles, as shown in this figure.
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The block accepts input only when the ready signal is 1 (high). In this case, the block captures
parameters on the first cycle when the input valid signal is 1 (high).

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. The
input data type used in this example for generating HDL code is fixdt(1,16,14).

This table shows the resource and performance data synthesis results when using the block with a
default configuration for a scalar input and an eight-element column vector input. The generated HDL
is targeted to the Xilinx Zynq- 7000 ZC706 evaluation board.

Input Data Slice LUTs Slice Registers DSPs Block
RAMs

Maximum Frequency
in MHz

Scalar 2389 4103 8 3 263.4
Vector 12311 21705 56 16 236.3

References
[1] 3GPP TS 36.211 version 14.2.0 Release 14. "Physical channels and modulation." LTE - Evolved

Universal Terrestrial Radio Access (E-UTRA).

[2] "Wireless LAN Medium Access Control (MAC) and Physical layer (PHY) Specifications." IEEE Std
802.11 – 2012.

[3] Stefania Sesia, Issam Toufik, and Matthew baker. LTE - THE UMTS Long Term Evolution from
theory to practice.

[4] Erik Dahlman, Stefan Parkvall, and Johan Skold. 4G - LTE/LTE - Advanced for Mobile broadband
Second edition.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.
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HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

This block does not have any HDL Block Properties.

See Also
Blocks
OFDM Modulator Baseband | OFDM Demodulator

Objects
comm.OFDMModulator

Introduced in R2020a
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OFDM Channel Estimator
Estimate channel using input data and reference subcarriers
Library: Wireless HDL Toolbox / Modulation

Description
The OFDM Channel Estimator block estimates a channel using input data and reference subcarriers.
The block accepts data subcarriers, a valid control port, and refData and refValid reference ports.
The block outputs channel estimates and a valid control port. The block allows you to specify the
number of subcarriers to estimate for each output symbol.

You can use this block to estimate multipath faded channels on the receiver side in different
communications standards, such as long term evolution (LTE) [1] and wireless local area network
(WLAN) [4]. To perform proper channel estimation, the refData and refValid ports must be
synchronized with the data and valid ports, respectively. For more information about channel
estimation and reference data, see “Channel Estimation” (LTE Toolbox).

This block provides an interface and architecture suitable for HDL code generation and hardware
deployment.

Ports
Input

data — Input data subcarriers
scalar

Input data subcarriers, specified as a scalar of real or complex values.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid input data
scalar

Indicates valid input data, specified as a scalar.

This port is a control signal that indicates when the sample from the data input port is valid. When
this value is 1, the block captures the values from the data input port. When this value is 0, the block
ignores the values from the data input port.
Data Types: Boolean

refData — Reference data subcarriers
scalar
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Reference data subcarriers, specified as a scalar of real or complex values.

Reference data must be a sequence of unimodular values. In a sequence of values, r1, r2, r3…, rn, the
values are unimodular if rj x rj* = 1,

where:

• j = 1, 2, 3, …, n.
• rj* is the complex conjugate of rj.

Data Types: single | double | int8 | int16 | int32 | signed fixed point

refValid — Indicates valid reference data
scalar

Indicates valid reference data, specified as a scalar.

This port is a control signal that indicates when the sample from the refData input port is valid.
When this value is 1, the block captures the values from the refData input port. When this value is 0,
the block ignores the values from the refData input port.

refValid port values must be synchronized with valid port values.
Data Types: Boolean

numScPerSym — Number of valid subcarriers per OFDM symbol
scalar

Number of valid subcarriers per OFDM symbol, specified as a scalar in the range from 2 to 65,536.

To support the minimum number of subcarriers per symbol, numScPerSym must be of data type
fixdt(0,k,0), where k is greater than or equal to 2.

Dependencies

To enable this port, select the Enable averaging parameter or Enable interpolation parameter.
Data Types: uint8 | uint16 | uint32 | unsigned fixed point

reset — Clear internal states
scalar

Clear internal states, specified as a scalar. When this value is 1, the block stops the current
calculation and clears all internal states.

Dependencies

To enable this port, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — Output channel estimates
scalar

Output channel estimates, returned as a scalar. The output data type is the same as the input data.
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Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid output data
scalar

Indicates valid output data, returned as a scalar.

This port is a control signal that indicates when the data output port is valid. The block sets this
value to 1 when the data samples are available from the data output port.
Data Types: Boolean

Parameters
Enable averaging — Average LS estimates
off (default) | on

Select this parameter to enable averaging.

Number of symbols to be averaged — Number of symbols to be averaged
2 (default) | integer in range from 2 to 14

Specify the number of symbols to be averaged.
Dependencies

To enable this parameter, select the Enable averaging parameter.

Enable interpolation — Interpolate LS estimates
off (default) | on

Select this parameter to enable interpolation.

Interpolation factor — Interpolation factor
3 (default) | integer in range from 2 to 12

Specify the interpolation factor.
Dependencies

To enable this parameter, select the Enable interpolation parameter.

Maximum number of subcarriers per symbol — Maximum number of subcarriers per
symbol
52 (default) | integer in range from 2 to 65, 536

Specify the maximum number of subcarriers per symbol.
Dependencies

To enable this parameter, select the Enable averaging parameter or Enable interpolation
parameter.

Enable reset input port — Reset signal
off (default) | on

Select this parameter to enable the reset port on the block icon.
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Algorithms
This figure shows the architecture block diagram of the OFDM Channel Estimator block. The block
implements least squares (LS) estimation for the channel estimation. To improve the accuracy of LS
estimation, the block uses an averaging technique and provides an interpolation feature if the
number of known reference signals are limited to certain subcarriers for a particular OFDM symbol.
The Least Squares (LS) Estimation block calculates the least-squares estimates using the input data
and the reference data.

The Averaging and Interpolation blocks are optional. To perform averaging, select the Enable
averaging parameter. To perform interpolation, select the Enable interpolation parameter. The
parameters shown in this figure configure the behavior of the block.

The Averaging block accepts the LS estimates and averages the corresponding subcarriers with valid
LS estimates over the number of OFDM symbols to be averaged provided in the block mask. This
figure shows a sample output of the OFDM Channel Estimator block when only averaging is enabled.
In this case, the Number of symbols to be averaged parameter is set to 4, Maximum number of
subcarriers per symbol parameter is set to 16, and the numScPerSym port is set to 4.

The block samples the numScPerSym port value at the first valid clock cycle. After that, the block
samples this value at the every first valid clock cycle, after completing the valid number of Number
of symbols to be averaged x numScPerSym clock cycles. As the number of OFDM symbols to be
averaged is 4, the output valid shows the valid channel estimates obtained by averaging over four
OFDM symbols.

1 Blocks

1-206



The Interpolation block accepts the LS estimates and performs linear interpolation to calculate the
missing channel information between two consecutive valid LS estimates. This figure shows a sample
output of the OFDM Channel Estimator block when only interpolation is enabled. In this case, the
Interpolation factor parameter is set to 2, Maximum number of subcarriers per symbol
parameter is set to 16, and the numScPerSym port is set to 8.

The block samples the numScPerSym port value at the first valid clock cycle. After that, the block
samples this value at the every first valid clock cycle, after completing the valid number of
subcarriers per symbol clock cycles. The output valid shows the interpolated LS estimates for two
OFDM symbols.

Latency

The latency of the block varies with the block parameter values and numScPerSym port values. This
table provides the latency calculations of the block for different conditions.

Enable Averaging Value Enable Interpolation Value Latency Value (in Clock Cycles)
Off Off 12
On Off [(Number of symbols to be averaged – 1)

x numScPerSym] + 13
Off On Interpolation factor + 11
On On [(Number of symbols to be averaged – 1)

x numScPerSym] + Interpolation factor
+ 12

This figure shows a sample output of the OFDM Channel Estimator block in an LTE standard
configuration. In this case, the Number of symbols to be averaged parameter is set to 14,
Interpolation factor parameter is set to 3, Maximum number of subcarriers per symbol
parameter is set to 72, and numScPerSym port is set to 72. The latency of the block is 951 clock
cycles.
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Performance

This table shows the resource and performance data synthesis results of the block when you set the
Number of symbols to be averaged parameter to 14, Interpolation factor parameter to 3,
Maximum number of subcarriers per symbol parameter to 180, and numScPerSym port to 180.
The input data provided is of data type fixdt(1,16,13). The generated HDL is targeted to the
Xilinx Zynq- 7000 ZC706 evaluation board. The design achieves a clock frequency of 244.6 MHz.

Resource Number Used
Slice LUTs 2684
Slice Registers 1184
DSPs 6
Block RAMs 1.5

References
[1] 3GPP TS 36.211 version 14.2.0 Release 14. "Physical channels and modulation." LTE - Evolved

Universal Terrestrial Radio Access (E-UTRA).

[2] Sesia, Stefania, Issam Toufik, and Matthew Baker, eds. LTE - The UMTS Long Term Evolution:
From Theory to Practice. Chichester, UK: John Wiley & Sons, Ltd, 2011. https://doi.org/
10.1002/9780470978504.

[3] Dahlman, Erik, Stefan Parkvall, and Johan Sköld. 4G LTE/LTE-Advanced for Mobile Broadband.
Second edition. Amsterdam ; New York: Elsevier, 2014.

[4] "Wireless LAN Medium Access Control (MAC) and Physical layer (PHY) Specifications." IEEE Std
802.11 – 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.
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HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
OFDM Channel Estimator | OFDM Equalizer

Functions
nrChannelEstimate | lteDLChannelEstimate | wlanLLTFChannelEstimate

Introduced in R2020a
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RS Encoder
Encode message to RS codeword
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The RS Encoder block encodes message data to a Reed-Solomon (RS) codeword. The block accepts
message data and a samplecontrol bus and outputs codeword data symbols and a samplecontrol
bus.

Because the latency of the block varies, the block provides output port nextFrame that indicates
when the block is ready to accept new input message data. The block provides an architecture
suitable for HDL code generation and hardware deployment and supports shortened message
lengths.

You can use this block to model many communication system forward error correcting (FEC) codes.
The block supports digital subscriber line (DSL), WiMAX (802.16 m and e), digital video broadcast
handheld (DVB-H) terminals, digital video broadcast satellite (DVB-S) services, and digital video
broadcast satellite services to handheld (DVB-SH) devices below 3 MHz.

Ports
Input

data — Input message data
scalar

Input message data, specified as a scalar representing one symbol.

The input word length must be an unsigned integer equal to ceil(log2(Codeword length (N))). For
an input data word length of 3, the codeword length parameter, Codeword length (N), must be 7.

double and single data types are allowed for simulation, but not for HDL code generation.
Data Types: double | single | uint8 | uint16 | fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

1 Blocks

1-210



For more details, see “Sample Control Bus”.
Data Types: bus

Output

data — Encoded codeword data
scalar

Encoded codeword data, returned as a scalar. This output data width is same as the input data width.
Data Types: double | single | uint8 | uint16 | fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

nextFrame — Block ready indicator
scalar

Block ready indicator, returned as a scalar.

The block sets this signal to 1 (true) when the block is ready to accept the start of the next frame. If
the block receives an input ctrl.start signal while nextFrame is 0 (false), the block discards the
frame in progress and begins processing the new data.
Data Types: Boolean

Parameters
Codeword length (N) — Length of codeword
7 (default) | integer in the range from 7 to 65,535

Specify the codeword length.

The codeword length must be an integer equal to 2M – 1, where M is an integer in the range from 3 to
16. For more information on representing data for RS codes, see “Integer Format (Reed-Solomon
Only)”.

Message length (K) — Length of message
3 (default) | integer in the range from 3 to (Codeword length (N) – 2)

Specify the message length.

For more information on representing data for RS codes, see “Integer Format (Reed-Solomon Only)”.
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Source of primitive polynomial — Primitive polynomial source
Auto (default) | Property

Specify the source of the primitive polynomial.

• Select Auto to specify the primitive polynomial based on the Codeword length (N) parameter
value. The degree of the primitive polynomial is calculated as M = ceil(log2(Codeword length
(N))).

• Select Property to specify the primitive polynomial using the Primitive polynomial parameter.

Primitive polynomial — Primitive polynomial
[1 0 1 1] (default) | binary row vector

Specify a binary row vector representing the primitive polynomial in descending order of powers.

For more information on how to specify a primitive polynomial, see “Primitive Polynomials and
Element Representations”.

Dependencies

To enable this parameter, set the Source of primitive polynomial parameter to Property.

Source of B, the starting power for roots of the primitive polynomial — Source
of starting power for roots of primitive polynomial
Auto (default) | Property

Specify the source of the starting power for roots of the primitive polynomial.

• Select Auto to use the default B value parameter value, 1.
• Select Property to enable the B value parameter.

B value — Starting power for roots of primitive polynomial
1 (default) | positive integer

Specify the starting power for roots of the primitive polynomial.

Dependencies

To enable this parameter, set the Source of B, the starting power for roots of the primitive
polynomial parameter to Property.

Enable puncturing — Puncture pattern source
off (default) | on

Select this parameter to enable the Puncture pattern vector parameter.

Puncture pattern vector — Puncture vector
[1; 1; 0; 0] (default) | binary column vector

Specify a binary column vector of length Codeword length (N) – Message length (N). A value of 1
indicates that the block data symbol is not punctured, and remained unchanged from the data
stream. A value of 0 indicates that the data symbol is punctured, or removed, from the data stream.

Dependencies

To enable this parameter, select the Enable puncturing parameter.
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Algorithms
The RS Encoder block encodes a message data of length K into an RS codeword of length N. The
block requires a minimum gap of N – K clock cycles to add N – K parity length to the message data of
length K. During these N – K parity length clock cycles, the block does not accept new data. So, the
minimum duration between messages must be N – K clock cycles.

• Every start signal that is high indicates the start of a new message. When multiple start high
signals exist, the block accepts only the latest start signal.

• start and end high signals are valid only when the valid signal of the block is high.
• The block accepts end signals with the corresponding start signal. In case of multiple end high

signals, the block accepts only the first end high signal and ignores the remaining end high
signals.

Latency

This figure shows a sample output of the RS Encoder block with latency according to the DVB-S
standard configuration, Codeword length (N) and Message length (K) parameter values specified
as 255 and 239, respectively, and with puncturing disabled. In this case, the latency of the block is 1
clock cycle.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. The
input data type used for generating HDL code is fixdt(0,8,0).

This table shows the resource and performance data synthesis results when using the block with
Codeword length (N) and Message length (K) parameter values specified as 255 and 239,
respectively. The generated HDL is targeted to the Xilinx Zynq- 7000 ZC706 evaluation board. The
design achieves a clock frequency of 440 MHz.

Resource Number Used
LUTs 237
Registers 154
DSPs 0
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Resource Number Used
Block RAMs 7.5

References
[1] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage. Englewood

Cliffs, NJ: Prentice Hall, 1995.

[2] Clark, George C., and J. Bibb Cain. Error-Correction Coding for Digital Communications.
Applications of Communications Theory. New York: Plenum Press, 1981.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Integer-Output RS Decoder | Integer-Input RS Encoder | RS Decoder

Introduced in R2020b
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NR CRC Encoder
Generate CRC code bits and append them to input data
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The NR CRC Encoder block calculates and generates a short, fixed-length binary sequence, known as
the cyclic redundancy check (CRC) checksum, appends it to each frame of streaming data samples,
and outputs CRC-encoded data. The block accepts and returns a data sample stream with
accompanying control signals. The control signals indicate the validity of the samples and the
boundaries of the frame.

The block supports scalar and vector inputs and outputs data as either a scalar or vector based on the
input data. To achieve higher throughput, the block accepts a binary vector or unsigned integer
scalar input and implements a parallel architecture. The input data width must be less than or equal
to the length of the CRC polynomial and the length of the CRC polynomial, must be divisible by the
input data width. The block supports all CRC polynomials specified according to the 5G new radio
(NR) standard 3GPP TS 38.212 [1]. When you select the CRC24C polynomial, the block supports
dynamic CRC mask.

The block provides an interface and hardware-optimized architecture suitable for HDL code
generation and hardware deployment.

Ports
Input

data — Input data
binary scalar | binary vector | unsigned integer scalar

Input data, specified as a binary scalar, binary vector, or unsigned integer scalar.

You can specify the input data with one of these options:

• Scalar – Specify an integer representing several bits. For this case, the block supports unsigned
integer (uint8, uint16, or ufixN) and Boolean data types.

• Vector – Specify a vector of binary values of size N. For this case, the block supports Boolean and
ufix1 data.

N is the input data width, and it must be less than or equal to the length of the CRC polynomial and a
factor of the specified CRC polynomial length.

double and single data types are supported for simulation, but not for HDL code generation.
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Example: For the CRC type CRC24A, the valid data widths are 24, 12, 8, 6, 4, 3, 2, and 1. An integer
input is interpreted as a binary word. For example, when you specify a uint8 input of 19, it is
equivalent to a vector input [0 0 0 1 0 0 1 1].
Data Types: double | single | ufix1 | uint8 | uint16 | Boolean | ufixN

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

CRCMask — CRC checksum mask
nonnegative integer

CRC checksum mask, specified as a nonnegative integer representing a binary word from 0 to
2CRCLength – 1, where CRCLength is the length of the CRC polynomial.

This mask is typically a radio network temporary identifier (RNTI). The RNTI is used to XOR the CRC
checksum.

Dependencies

To enable this port, set the CRC type parameter to CRC24C and select the Enable CRC mask input
port parameter.
Data Types: ufix24

Output

data — CRC-encoded data
scalar | vector

CRC-encoded data with appended CRC checksum, returned as a scalar or vector. The output data
type and size are the same as the input data.
Data Types: double | single | ufix1 | uint8 | uint16 | Boolean | ufixN

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
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• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Parameters
CRC type — Type of CRC
CRC16 (default) | CRC6 | CRC11 | CRC24A | CRC24B | CRC24C

Select the type of CRC. Each CRC type indicates a polynomial, as shown in this table.

CRC Type Polynomial
CRC6 [1 1 0 0 0 0 1]
CRC11 [1 1 1 0 0 0 1 0 0 0 0 1]
CRC16 [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]
CRC24A [1 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1]
CRC24B [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1]
CRC24C [1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1]

These CRC polynomials are specified according to the 5G NR standard 3GPP TS 38.212 [1].

Enable CRC mask input port — Enable CRC checksum mask input port
off (default) | on

Select this parameter to enable the CRCMask input port.

Dependencies

To enable this parameter, set the CRC type parameter to CRC24C.

Algorithms
When you use a binary vector or unsigned integer scalar input, the block implements a parallel CRC
algorithm [2].

To provide high throughput for modern communications systems, the block implements the CRC
algorithm with a parallel architecture. This architecture recursively calculates M bits of a CRC
checksum for each W input bits. At the end of the frame, the final checksum result is appended to the
message. For a polynomial length of M, the recursive checksum calculation for W bits in parallel is

X′ = FW( × )X( + )D .

FW is an M-by-M matrix that selects elements of the current state for the polynomial calculation with
the new input bits. D is an M-element vector that provides the new input bits, ordered in relation to
the generator polynomial and padded with zeros. The block implements the (×) with logical AND and
(+) with logical XOR.
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Latency

The latency of the block varies with the CRC polynomial length, the type of input (scalar or vector),
and the data width of the input. The latency of the block is calculated from the start of the input
frame to the start of the output frame by using the formula (CRCLength/N) + 3 clock cycles, where N
is the input data width.

The frame gap between two frames (that is, from ctrl.end of the first frame to ctrl.start of the next
frame) must be greater than the length of the CRC polynomial plus the latency of the first frame. In
case of continuous inputs, the block discards the first frame and starts processing the next frame.

Scalar Input

This figure shows a sample output and latency of the NR CRC Encoder block when you specify a
scalar input of data type ufix8 with a data width of 8, and set the CRC type parameter to CRC16.
The latency of the block is 5 clock cycles, as shown in this figure.
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Vector Input

This figure shows a sample output and latency of the NR CRC Encoder block when you specify a
vector input of data type ufix1 with a data width 3, set the CRC type parameter to CRC24C, and
select the Enable CRC mask input port parameter. The latency of the block is 11 clock cycles, as
shown in this figure.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
varies based on the CRC polynomial length and the input data width.

This table shows the resource and performance data synthesis results of the block when the CRC
type parameter is set to CRC24A for a scalar input of data type ufix1, scalar input of data type
ufix24, and 24-by-1 vector input of data type ufix1. The generated HDL is targeted to the Xilinx
Zynq- 7000 ZC706 evaluation board.

Input Data Slice LUTs Slice Registers Block
RAMs

Maximum Frequency
in MHz

Scalar ufix1 147 168 0 614.6
ufix24 207 192 0 581.0

Vector 182 160 0 571.1

References
[1] 3GPP TS 38.212. “NR; Multiplexing and Channel Coding.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network.

[2] Campobello, G., G. Patane, and M. Russo. “Parallel CRC Realization.” IEEE Transactions on
Computers 52, no. 10 (October 2003): 1312–19. https://doi.org/10.1109/TC.2003.1234528.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.
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HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
NR CRC Decoder

Functions
nrCRCEncode | nrCRCDecode

Introduced in R2021a
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NR CRC Decoder
Detect errors in input data using CRC
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The NR CRC Decoder block calculates the cyclic redundancy check (CRC) checksum and compares it
with the appended CRC checksum for each frame of streaming data samples. If the two CRC
checksums do not match, the block reports an error. The block accepts and returns a data sample
stream with accompanying control signals. The control signals indicate the validity of the samples
and the boundaries of the frame.

The block supports scalar and vector inputs and outputs data as either a scalar or vector based on the
input data. To achieve higher throughput, the block accepts a binary vector or unsigned integer
scalar input and implements a parallel architecture. The input data width must be less than or equal
to the length of the CRC polynomial, and the length of the CRC polynomial must be divisible by the
input data width. The block supports all CRC polynomials specified according to the 5G new radio
(NR) standard 3GPP TS 38.212 [1]. When you select the CRC24C polynomial, the block supports
dynamic CRC mask.

The block provides an interface and hardware-optimized architecture suitable for HDL code
generation and hardware deployment.

Ports
Input

data — CRC-encoded data
binary scalar | binary vector | unsigned integer scalar

CRC-encoded data, specified as a binary scalar, binary vector, or unsigned integer scalar.

You can specify the input data with one of these options:

• Scalar – Specify an integer representing several bits. For this case, the block supports unsigned
integer (uint8, uint16, or ufixN) and Boolean data types.

• Vector – Specify a vector of binary values of size N. For this case, the block supports Boolean and
ufix1 data types.

N is the input data width, and it must be less than or equal to the length of the CRC polynomial and a
factor of the specified CRC polynomial length.

double and single data types are supported for simulation, but not for HDL code generation.
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Example: For the CRC type CRC24A, the valid data widths are 24, 12, 8, 6, 4, 3, 2, and 1. An integer
input is interpreted as a binary word. For example, when you specify a uint8 input of 19, it is
equivalent to a vector input [0 0 0 1 0 0 1 1].
Data Types: double | single | ufix1 | uint8 | uint16 | Boolean | ufixN

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

CRCMask — CRC checksum mask
nonnegative integer

CRC checksum mask, specified as a nonnegative integer representing a binary word from 0 to
2CRCLength – 1, where CRCLength is the length of the CRC polynomial.

This mask is typically a radio network temporary identifier (RNTI). The RNTI is used to XOR the CRC
checksum.

Dependencies

To enable this port, set the CRC type parameter to CRC24C port and select the Enable CRC mask
input port parameter.
Data Types: ufix24

Output

data — CRC-decoded data
scalar | vector

CRC-decoded data, returned as a scalar or vector. The output data type and size are the same as the
input data.
Data Types: double | single | ufix1 | uint8 | uint16 | Boolean | ufixN

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
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• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

err — Indication of corruption of received data
binary or integer scalar

Indication of corruption of the received data, returned as a binary or integer scalar.

When this value is 1, the message contains at least one error. When this value is 0, the message
contains zero errors. This value is valid when ctrl.end is set 1 true.

If you select the Full checksum mismatch parameter, this port returns the integer XOR result of
the checksum mismatch. This value is the result of the logical CRC difference between the CRC
checksum comprised in the input and the CRC checksum recalculated across the data part of the
input. If you specify a CRC mask, the block XORs the checksum with the specified CRC mask.
Data Types: Boolean | ufix24

Parameters
CRC type — Type of CRC
CRC16 (default) | CRC6 | CRC11 | CRC24A | CRC24B | CRC24C

Select the CRC type. Each CRC type indicates a polynomial, as shown in this table.

CRC Type Polynomial
CRC6 [1 1 0 0 0 0 1]
CRC11 [1 1 1 0 0 0 1 0 0 0 0 1]
CRC16 [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]
CRC24A [1 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1]
CRC24B [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1]
CRC24C [1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1]

These CRC polynomials are specified according to 5G new radio (NR) standard 3GPP TS 38.212 [1].

Full checksum mismatch — Enable full checksum
off (default) | on

Select this parameter to enable full checksum.

When you select this parameter, the err port returns an integer that represents the locations of bit
mismatches in the CRC checksum bits. When you clear this parameter, the err port returns a Boolean
value indicating whether any CRC checksum bits are mismatched.

Enable CRC mask input port — Enable CRC checksum mask input port
off (default) | on

Select this parameter to enable the CRCMask input port.
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Dependencies

To enable this parameter, set the CRC type parameter to CRC24C.

Algorithms
When you use a binary vector or unsigned integer scalar input, the block implements a parallel CRC
algorithm [2].

To provide high throughput for modern communications systems, the block implements the CRC
algorithm with a parallel architecture. This architecture recursively calculates M bits of a CRC
checksum for each W input bits. At the end of the frame, the final checksum result is appended to the
message. For a polynomial length of M, the recursive checksum calculation for W bits in parallel is

X′ = FW( × )X( + )D .

FW is an M-by-M matrix that selects elements of the current state for the polynomial calculation with
the new input bits. D is an M-element vector that provides the new input bits, ordered in relation to
the generator polynomial and padded with zeros. The block implements the (×) with logical AND and
(+) with logical XOR.

Latency

The latency of the block varies with the CRC polynomial length, the type of input (scalar or vector),
and the data width of the input. The latency of the block is calculated from the start of the input
frame to the start of output frame by using the formula ((CRCLength/N) x 3) + 5 clock cycles, where
N is the input data width.
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The frame gap between two frames (that is from ctrl.end of the first frame to ctrl.start of the next
frame) must be greater than the length of the CRC polynomial plus the latency of the first frame. In
case of continuous inputs, the block discards the first frame and starts processing the next frame.

Scalar Input

This figure shows a sample output and latency of the NR CRC Decoder block when you specify a
scalar input of data type ufix4 with a data width of 4, and set the CRC type parameter to CRC16.
The latency of the block is 17 clock cycles, as shown in this figure.

Vector Input

This figure shows a sample output and latency of the NR CRC Decoder block when you specify a
vector input of data type ufix1 with a data width of 24, set the CRC type parameter to CRC24C, and
select the Enable CRC mask input port parameter. The latency of the block is 8 clock cycles, as
shown in this figure.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
varies based on the CRC polynomial length and the input data width.

This table shows the resource and performance data synthesis results of the block when the CRC
type parameter is set to CRC24A for a scalar input of data type ufix1, , scalar input of data type
ufix24, and for a 24-by-1 vector input of data type ufix1. The generated HDL is targeted to the
Xilinx Zynq- 7000 ZC706 evaluation board.
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Input Data Slice LUTs Slice Registers Block
RAMs

Maximum Frequency
in MHz

Scalar ufix1 246 345 0 581.4
ufix24 403 483 0 553.1

Vector 361 458 0 526.6

References
[1] 3GPP TS 38.212. “NR; Multiplexing and Channel Coding.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network.

[2] Campobello, G., G. Patane, and M. Russo. “Parallel CRC Realization.” IEEE Transactions on
Computers 52, no. 10 (October 2003): 1312–19. https://doi.org/10.1109/TC.2003.1234528.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
NR CRC Encoder
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Functions
nrCRCDecode | nrCRCEncode

Introduced in R2021a
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OFDM Equalizer
Equalize OFDM data using channel estimates
Library: Wireless HDL Toolbox / Modulation

Description
The OFDM Equalizer block equalizes the OFDM data using channel estimates. The block supports
zero-forcing (ZF) and minimum mean square error (MMSE) algorithms for channel equalization in the
frequency domain. The block accepts data symbols, estimated channel (hEst), and the estimated
channel length per symbol (hEstLen) data ports and valid and loadhEst control ports. The block
outputs an equalized data port and a valid control port.

You can use this block to equalize channel effects in different communications standards, such as long
term evolution (LTE) [1], 5G new radio (NR) standard TS 38.212 [2], and wireless local area network
(WLAN) [3].

The block provides an interface and architecture suitable for HDL code generation and hardware
deployment.

Ports
Input

data — OFDM data
scalar

OFDM data, specified as a complex-valued scalar.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

hEst — Channel estimated data
scalar

Channel estimated data, specified as a complex-valued scalar.

The input data type must be fixdt(1,k,m), where k is less than or equal to 30, and m is less than k.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | fixed point

valid — Control to indicate valid input data
scalar

Control to indicate valid input data, specified as a Boolean scalar.
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This port is a control signal that indicates when the input data and hEst port values are valid. When
this value is 1, the block captures the values from the data and hEst input ports. When this value is
0, the block ignores the values on the data and hEst input ports.
Data Types: Boolean

hEstLen — Length of estimated channel per symbol
scalar

Length of the estimated channel per symbol, specified as a scalar in the range from 2 to 65,536.

To support the minimum number of subcarriers per symbol, this data type must be fixdt(0,k,0),
where k is greater than or equal to 2.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | fixed point

loadhEst — Channel estimates control
scalar

Channel estimates control, specified as a Boolean scalar.

When this value is 1, the block loads the channel estimates until the length of the channel estimate
specified by the hEstLen input port. hEstLen is sampled at loadhEst.

When this value is 0, and the input is 1, the block performs equalization with the previously sampled
hEstLen input and the stored hEst input values. If the previously sampled hEstLen value is not
available, the block performs equalization with the instantaneous inputs data, hEst, and nVar. For
more information, see “Algorithms” on page 1-230.
Data Types: Boolean

nVar — Noise variance
scalar

Noise variance, specified as a scalar.

When the input valid is 1, the block samples the nVar port. This value must be of data type
fixdt(0,k,m), where k is less than or equal to 16, and m is less than or equal to k.

double and single data types are supported for simulation, but not for HDL code generation.
Dependencies

To enable this port, set the Equalization method parameter to MMSE.
Data Types: single | double | uint8 | uint16 | fixed point

reset — Reset internal states
scalar

Reset internal states of the block to start with new data, specified as a scalar.
Dependencies

To enable this port, select the Enable reset input port parameter.
Data Types: Boolean
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Output

data — Complex output data
scalar

Complex output data, returned as a scalar. The output data type is the same as the input data type.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Indicates valid output data
scalar

Indicates valid output data, returned as a Boolean scalar.

This port is a control signal that indicates when the data output port is valid. When the data samples
are available on the data output port, the block sets this output valid value to 1.
Data Types: Boolean

Parameters
Equalization method — Equalization method
ZF (default) | MMSE

Select the equalization method. For more information about the equalization methods, see
“Algorithms” on page 1-230.

Maximum length of channel estimate per symbol — Maximum length of channel
estimate per symbol
52 (default) | integer in the range from 2 to 65, 536

Specify the maximum length of the channel estimate per symbol.

To support the minimum number of subcarriers per symbol, which is 2, the data type of the hEstLen
input must be fixdt(0,k,0), where k is greater than or equal to 2.

Enable reset input port — Reset signal
off (default) | on

Select this parameter to enable the reset input port.

Algorithms
The OFDM Equalizer block supports ZF and MMSE algorithms for channel equalization in the
frequency domain. The block stores the estimated channel information to equalize the OFDM symbols
and generates the equalized output using these algorithms.

The OFDM Equalizer block operation sequence is implemented using these subsystem blocks: Sample
and control information, Store and retrieve channel estimates, and ZF/MMSE equalization. This
figure shows these blocks.
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The Sample and control information block samples and validates the hEstLen input based on the
loadhEst input signal, validates the hEst and nVar inputs based on the validIn input signal, and
outputs the sampled hEstOut output, nVarOut output, and the control information signals that are
used in storing and retrieving channel information. The Store and retrieve channel estimates block
stores and retrieves the channel using RAM and switches. The ZF/MMSE Equalization block performs
ZF or MMSE equalization using these equations. The nVar input port is available when you set the
Equalization method parameter to MMSE.

• ZF Algorithm:

dataOutp = (hEstp* × dataInp) / hEstp
2

• MMSE Algorithm:

dataOutp = (hEstp* × dataInp)/ ( hEstp
2 + nVarp)

In these equations,

• dataIn is the demodulated output provided as an input to the block
• hEst is the estimated channel
• hEst* is the Hermitian of the estimated channel
• dataOut is the equalized output
• nVar is the noise variance
• p is equal to 0, 1, …. NSPS, where NSPS is the number of subcarriers per symbol.

This figure shows a sample block operation when you set the Equalization method parameter to ZF.
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In this figure, you can see three symbols (Symbol 1, Symbol 2, and Symbol 3) are input to the dataIn
port. When the validIn input is 1 (high) and the loadHest input is 1 (high), the block samples the
hEstlLen input value, which is 72 in this example. Based on the hEstlLen value, for Symbol 1, the
block provides the equalized output for the instantaneous hEst input values. When the loadHest
value changes to 0 (low), the block stores the hEst values and provides the equalized output for
Symbol 2 based on the stored hEst values. The hEstLen value remains the same until the loadHest
changes to 0 (low). Similarly, for Symbol 3, the block provides the equalized output for the
instantaneous hEst values based on the hEstlLen value, which is 52 in this example.

Latency

This figure shows a sample output of the OFDM Equalizer block when you set the Equalization
method parameter to MMSE and the Maximum length of channel estimate per symbol parameter
to 52. The latency of the block is 92 clock cycles.

1 Blocks

1-232



Performance

The performance of the synthesized HDL code varies with your target and synthesis options.

This table shows the resource and performance data synthesis results of the block when you set the
Equalization method parameter to MMSE, the Maximum length of channel estimate per symbol
parameter to 52, and the hEstLen port to 20. The input data is of data type fixdt(1,28,16). The
generated HDL is targeted to the Xilinx Zynq- 7000 ZC706 evaluation board. The design achieves a
clock frequency of 244.6 MHz.

Resource Number Used
Slice LUTs 7380
Slice Registers 8063
DSPs 24
Block RAMs 0

References
[1] 3GPP TS 36.211 version 14.2.0 Release 14. "Physical channels and modulation." LTE - Evolved

Universal Terrestrial Radio Access (E-UTRA).

[2] 3GPP TS 38.212. “NR; Multiplexing and Channel Coding.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

[3] "Wireless LAN Medium Access Control (MAC) and Physical layer (PHY) Specifications." IEEE Std
802.11 – 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).
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InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
OFDM Channel Estimator

Functions
nrEqualizeMMSE | lteEqualizeMMSE | lteEqualizeZF

Introduced in R2021a
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APP Decoder
Decode convolutionally-coded LLR values using MAP algorithm
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The APP Decoder block decodes convolutionally-coded log-likelihood ratio (LLR) values using the
maximum a-posteriori probability (MAP) decoding algorithm. The block accepts coded and uncoded
LLR values and a samplecontrol bus, decodes the coded LLR values, and outputs the updated
versions of the coded and uncoded LLR values and samplecontrol bus.

The block supports two decoding algorithms: Max Log MAP (max) and Log MAP (max*). You can
select the algorithm by setting the Algorithm parameter. The block supports terminated and
truncated modes and these decoding rates: 1/2, 1/3, 1/4, 1/5, 1/6, and 1/7. The block provides an
architecture suitable for HDL code generation and hardware deployment.

The block supports decoding of serial and parallel concatenated codes. Using this block, you can
build turbo decoders, custom decoders for concatenated codes, and product codes for iterative
decoding.

Ports
Input

LLRc — Coded LLR values
real-valued column vector

Coded LLR values, specified as a real-valued column vector of size N-by-1, where N is the decoding
rate in the range from 2 to 7.

The input vector size depends on the code rate of the block. The block derives the code rate from the
code generator polynomial value specified in the block mask. The block supports these code rates:
1/2, 1/3, 1/4, 1/5, 1/6 or 1/7.

double and single data types are supported for simulation, but not for HDL code generation. For
HDL code generation, the block supports fixdt(1,WL,FL) data type and the input word length
(WL) must be in the range from 4 to 16.
Data Types: single | double | int8 | int16 | signed fixed point

LLRu — Uncoded LLR values
real-valued scalar

Uncoded LLR values, specified as a real-valued scalar.
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double and single data types are supported for simulation, but not for HDL code generation. For
HDL code generation, the block supports fixdt(1,WL,FL) data type and the input word length
(WL) must be in the range from 4 to 16.
Data Types: single | double | int8 | int16 | signed fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Output

LLRu — Uncoded LLR values
real-valued scalar

Uncoded LLR values, returned as a real-valued scalar. The output data type is the same as the input
data type.

For inputs of fixed point data type, the output word length increases by floor(log2(N)) +
floor(log2(K – 1)) + 2 bits. N is the code rate, and K is the constraint length of the block.
Data Types: single | double | int8 | int16 | fixed point

LLRc — Coded LLR values
real-valued column vector

Coded LLR values, returned as a real-valued column vector of size N-by-1. The output data type is the
same as the input data type.

For fixed point inputs, the output word length increases by floor(log2(N)) + floor(log2(K – 1)) +
2 bits, where N is the code rate and K is the constraint length of the block.
Data Types: single | double | int8 | int16 | fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid
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For more details, see “Sample Control Bus”.
Data Types: bus

nextFrame — Block ready indicator
Boolean scalar

Block ready indicator, returned as a Boolean scalar.

The block sets this signal to 1 (true) when the block is ready to accept the start of the next frame. If
the block receives an input ctrl.start signal while nextFrame is 0 (false), the block discards the
frame in progress and begins processing the new data.
Data Types: Boolean

Parameters
Code generator — Code generator polynomial
[171,133] (default) | row vector of 2 to 7 elements

Specify a 1-by-n vector of octal values, where n is the length of the polynomial. The block accepts
polynomials from 2 to 7 elements long.

The block derives the constraint length and code rate based on the specified code generator
polynomial. Specify the code generator polynomial in such a way that the constraint length is in the
range from 3 to 9 and the code rates are 1/2, 1/3, 1/4, 1/5, 1/6, or 1/7.

For more information on how to specify a code generator polynomial for decoding blocks, see “Trellis
Description of a Convolutional Code”.

Termination method — End of frame behavior
Truncated (default) | Terminated

Select the termination method to specify the end of the frame behavior.

• Truncated — The block resets the state metrics after each frame, starts at the all-zeros state,
and ends with the non-all-zeros state. The input ctrl bus qualifies the input samples and marks the
frame boundaries.

• Terminated — The block resets the state metrics after each frame and starts and ends in the all-
zeros state. The input ctrl bus qualifies the input samples and marks the frame boundaries.

Algorithm — Decoding algorithm type
Max Log MAP (max) (default) | Log MAP (max*)

Select the type of decoding algorithm.

• Max Log MAP (max) — Max log MAP approximation
• Log MAP (max*) — Log MAP approximation

For more information about these algorithms, see [1].

Window length — Window on which MAP algorithm is to be performed
64 (default) | integer in the range 3 to 128
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Window on which the MAP algorithm is to be performed, specified as an integer in the range from 3
to 128. This integer represents the window length.

For better block performance results, the recommended window length is at least five times the
constraint length.

Disable LLRc output port — Option to disable LLRc output port
off (default) | on

Select this parameter to disable the output port LLRc from the block. Clear this parameter to enable
the output port LLRc on the block.

Algorithms
To perform MAP decoding, the block uses the Bahl, Cocke, Jalinek, and Raviv (BCJR) algorithm. The
block implements MAP decoding using the log MAP approximation or max log MAP approximation
algorithm. You can select the algorithm using the Algorithm parameter. These algorithms implement
a-posteriori probability (APP) decoding. The max log MAP approximation option uses max(ai) as the
approximation, while the log MAP approximation option uses max(ai) plus a correction term given by
ln(1 + exp(− ai− 1− ai )) [1].

Latency

The latency of the block varies with the constraint length and the specified window length. The
latency of the block is equal to 2 x W + 2(K - 1) + 4. W is the window length, K is the constraint length,
and 4 is the number of fixed pipeline delays.

This figure shows a sample output and latency of the APP Decoder block for the default configuration.
In this case, the Code generator parameter is set to [171 133], the Termination method
parameter is set to Truncated, the Algorithm parameter is set to Max Log MAP (max), and the
Window length parameter is set to 64. The latency of the block is 196 clock cycles.

Performance

The performance of the synthesized HDL code varies with the target and synthesis options. It also
varies based on the input data type.

This table shows the resource and performance data synthesis results when you provide an input data
type of fixdt(1,8,3), specify the Code generator parameter as [5 7], select the Termination
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method parameter as Truncated, select the Algorithm parameter as Max Log MAP (max), and
set the Window length parameter to 64. The generated HDL is targeted to the Xilinx Zynq- 7000
ZC706 evaluation board. The design achieves a clock frequency of 297.06 MHz.

Resource Number Used
LUTs 2446
Registers 1264
DSPs 0
Block RAMs 2.5
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1997): 22–24. https://doi.org/10.1109/4234.552145.

[3] Benedetto, S., and G. Montorsi. “Performance of Continuous and Blockwise Decoded Turbo
Codes.” IEEE Communications Letters 1, no. 3 (May 1997): 77–79. https://doi.org/
10.1109/4234.585802.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).
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InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Convolutional Encoder | Viterbi Decoder | LTE Turbo Decoder

Introduced in R2021b
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CCSDS RS Decoder
Decode and recover message from RS codeword according to CCSDS standard
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The CCSDS RS Decoder block decodes and recovers a message from a Reed-Solomon (RS) codeword
according to the Consultative Committee for Space Data Systems (CCSDS) standard [1]. The block
accepts codeword data and a samplecontrol bus and outputs a decoded message data, a
samplecontrol bus, control signals that indicate whether the decoded data is corrupted and
whether the block is ready to accept data, and an optional signal to provide the number of corrected
errors. The block provides an architecture suitable for HDL code generation and hardware
deployment.

Because the latency of the block varies, the block provides the output port nextFrame that indicates
when the block is ready to accept new input codeword data. For more details about the latency of the
block, see the “Algorithm” on page 1-244 section.

The block also supports shortened message lengths. You can use this block in a CCSDS receiver for
satellite communication.

Ports
Input

data — Input codeword data
integer in the range from 0 to 255

Input codeword data, specified as an integer in the range from 0 to 255. This integer represents a
symbol.

The block accepts a maximum value of 255 x I and a minimum value of (255 – k + 1) x I for the
number of input codeword symbols per frame. k is the message length specified by the Message
length (k) parameter. I is the interleaving depth specified by the Interleaving depth (I) parameter.
The number of input codeword symbols must be an integral multiple of I.

The block supports back-to-back input frames for:

• Full-length codes when you set Message length (k) to 223 and Interleaving depth (I) to 3, 4,
5, or 8

• Full-length codes when you set Message length (k) to 239 and Interleaving depth (I) to 1, 2,
3, 4, 5, or 8

The block does not support back-to-back input frames for:
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• Shortened codes for any of the Message length (k) and Interleaving depth (I) values
• Full-length codes when you set Message length (k) to 223 and Interleaving depth (I) to 1 or 2

double and single data types are allowed for simulation, but not for HDL code generation. For HDL
code generation, specify this value in fixdt(0,8,0) or uint8 format.
Data Types: double | single | uint8 | fixdt(0,8,0)

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Output

data — Decoded message data
integer in the range from 0 to 255

Decoded message data, returned as an integer in the range from 0 to 255. The output data type is the
same as the input data type.

The block outputs N – (255 – k) x I number of decoded message symbols for N number of input
codeword symbols. k is the message length specified by the Message length (k) parameter and I is
the interleaving depth specified by the Interleaving depth (I) parameter.
Data Types: double | single | uint8 | fixdt(0,8,0)

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

err — Indication of corruption in output data
Boolean scalar

Indication of corruption in the output data, returned as a Boolean scalar.
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When this value is 1, the output contains errors. When this value is 0, the output contains zero errors.

If the number of symbol errors in the input codeword data is greater than (255 - k) x I / 2, the block
outputs data without correcting the errors and sets the err port to 1 to indicate that errors that
cannot be corrected exist in the input codeword data. k is the message length specified by Message
length (k) parameter.
Data Types: Boolean

nextFrame — Block ready indicator
Boolean scalar

Block ready indicator, returned as a Boolean scalar.

The block sets this signal to 1 (true) when the block is ready to accept the start of the next frame. If
the block receives an input ctrl.start signal while nextFrame is 0 (false), the block discards the
frame in progress and begins processing the new data.
Data Types: Boolean

numCorrErr — Number of corrected errors
nonnegative scalar

Number of corrected errors, returned as a nonnegative scalar.

The maximum number of errors that the block can correct is equal to (255 – k) x I / 2. If the number
of errors in the input codeword data is greater than (255 – k) x I / 2, the block outputs data without
correcting the errors and sets the numCorrErr port to 0 to indicate that none of those errors can be
corrected.

The block sets the numCorrErr port to 0 when the err port is 1.

Dependencies

To enable this port, select the Output number of corrected symbol errors parameter.
Data Types: uint8

Parameters
Message length (k) — Length of message
223 (default) | 239

Select the message length.

Interleaving depth (I) — Depth of interleaving
1 (default) | 2 | 3 | 4 | 5 | 8

Select the interleaving depth.

Output number of corrected symbol errors — Number of corrected symbol errors
off (default) | on

Select this parameter to enable the numCorrErr output port. This port outputs the number of
corrected errors.
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Algorithms
This block diagram shows the high-level overview of the CCSDS RS Decoder block and its operation
when you set the Interleaving depth (I) parameter to 4. This operation is a parallel implementation
and contains logic that is equivalent to four independent RS decoders because the specified
interleaving depth is 4.

The D2C block converts the input dual basis codeword symbols to conventional basis codeword
symbols and sends them for decoding. Simultaneously, the D2C block sends the conventional basis
codeword symbols to the RAM block. The RAM block stores these symbols for correction. The switch
(S1) interleaves the conventional basis symbols and sends them to the respective RS Decoding Logic
blocks. Each RS Decoding Logic block calculates syndrome values, determines the error location
polynomial using the Berlekamp-Massey algorithm, and finds error locations and magnitudes using
Chien search [4] and Forney [5] algorithms, respectively. For information about the Berlekamp-
Massey algorithm, see “Algorithms for BCH and RS Errors-only Decoding”.

The error magnitudes from these RS Decoding Logic blocks are XORed with their respective input
codeword symbols that are stored in the RAM block by using the switch (S2) and the calculated error
locations to obtain the corrected message symbols. The C2D block converts the corrected
conventional basis symbols back to dual basis symbols.

Latency

The latency between valid input data and the corresponding valid output data depends on the
interleaving depth and the time the block takes to calculate error locator polynomials and find error
locations and magnitudes. The time for which the nextFrame output port value remains 0 depends
on the processing time of the block. The processing time of the block is equal to the sum of the time
the block takes to compute error locating polynomials (ELPTime) and find error locations and error
magnitudes (ConvTime). This equation represents the processing time.

Processing_time = ELPTime + ConvTime
= 4 × t + t(2 × t + 1) + d
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t is the number of errors an RS code can correct and is equal to (255 – k)/2. k is the message length
specified by the Message length (k) parameter and d is the number of pipeline delays, which is
fixed to 10 for this block.

The latency of the block is 2ceil (log2(Processing_time + 256)) + 255 x I + 1. I is interleaving depth specified by
the Interleaving depth (I) parameter.

This figure shows a sample output and latency of the CCSDS RS Decoder block when you set the
Message length (k) and Interleaving depth (I) parameter values to 223 and 4, respectively. In
this case, the processing time is less than the 255 x Interleaving depth (I), so the block provides
support for continuous input frames. The latency of the block is 2045 clock cycles.

Performance

The performance of the synthesized HDL code varies with the target and synthesis options. It also
varies based on the message length and interleaving depth.

This table shows the resource and performance data synthesis results when you specify the input in
fixdt(0,8,0) format and set the Message length (k) and Interleaving depth (I) parameter
values to 223 and 4, respectively. The generated HDL is targeted to the Xilinx Zynq- 7000 ZC706
evaluation board. The design achieves a clock frequency of 132 MHz.

Resource Number Used
LUTs 16056
Registers 12397
DSPs 0
Block RAMs 17

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
CCSDS RS Encoder

Functions
ccsdsRSEncode | ccsdsRSDecode
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Introduced in R2021b
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DVB-S2 Symbol Demodulator
Demodulate complex constellation symbol to set of LLR values or data bits according to DVB-S2
standard
Library: Wireless HDL Toolbox / Modulation

Description
The DVB-S2 Symbol Demodulator block demodulates complex data symbol to log-likelihood ratio
(LLR) values or data bits based on the modulation types supported by the Digital Video Broadcast
Satellite Second Generation (DVB-S2) standard [1]. The block accepts equalized complex data
symbols and a samplecontrol bus or a valid signal. It outputs demodulated LLR values or data
bits and a samplecontrol bus or a valid signal based on the selected output type. The block
provides an option to select the output type as vector or scalar. The number of demodulated LLR
values or data bits for a given symbol depends on the modulation type, as shown in this table.

Modulation Type Number of LLR Values or Data Bits Per
Symbol

pi/2-BPSK 1
QPSK 2
8-PSK 3
16-APSK 4
32-APSK 5

The block provides an architecture suitable for HDL code generation and hardware deployment. You
can use this block in the development of a DVB-S2 receiver.

Ports
Input

data — Data symbols
real-valued scalar | complex-valued scalar

Data symbols, specified as a real- or complex-valued scalar.

double and single data types are supported for simulation, but not for HDL code generation.

For HDL code generation, the input data type must be signed fixed point and the maximum
input word length the block supports is 32 bits.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus
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Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

valid — Indicate valid input data
scalar

Control signal that indicates if the input data is valid. When this value is 1 (true), the block accepts
the values on the data input port. When this value is 0 (false), the block ignores the values on the
data input port.

Dependencies

To enable this port, set the Output type parameter to Scalar.
Data Types: Boolean

modIdx — Modulation index
0 | 1 | 2 | 3 | 4

Modulation index, specified as 0, 1, 2, 3, or 4. Each value represents a specific modulation type, as
shown in this table.

Modulation Index Modulation Type
0 QPSK
1 8-PSK
2 16-APSK
3 32-APSK
4 pi/2-BPSK

If you specify a value other than ones listed in this table, the block displays a warning message and
applies QPSK modulation. Specify this value in fixdt(0,3,0) format.

Dependencies

To enable this port, set the Modulation source parameter to Input port.
Data Types: single | double | fixdt(0,3,0)

codeRateIdx — Code rate index
5 | 6 | 7 | 8 | 9 | 10

Code rate index, specified as 5, 6, 7, 8, 9, or 10. Each value represents a specific code rate, as shown
in this table.
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Code Rate Index Code Rate
5 2/3
6 3/4
7 4/5
8 5/6
9 8/9
10 9/10

The code rates in this table are applicable for the modIdx input port values 2 and 3, which imply 16-
APSK and 32-APSK modulations, respectively. When you set the modIdx port values to 0, 1, or 4, the
block ignores the codeRateIdx input port values.

Specify this value in fixdt(0,4,0) format.

Dependencies

To enable this port, set the Modulation source parameter to Input port.
Data Types: single | double | fixdt(0,4,0)

nVar — Noise variance
real-valued positive scalar

Noise variance, specified as a real-valued positive scalar.

This value must be of data type fixdt(0,k,m), where k is less than or equal to 16 and m is less than
or equal to k.

When the Output type parameter is set to Scalar, the block samples the nVar port when the input
valid is 1.

When the Output type parameter is set to Vector, the block samples the nVar port based on the
samplecontrol bus.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

To enable this port, select the Enable noise variance input port parameter.
Data Types: single | double | uint8 | uint16 | unsigned fixed point

Output

data — Demodulated LLR values or data bits
scalar | 8-element real-valued column vector

Demodulated LLR values or data bits, returned as a scalar when the Output type parameter is set to
Scalar and as an 8-element real-valued column vector when the Output type parameter is set to
Vector.

• When the Decision type parameter is set to Approximate log-likelihood ratio:

• For double and single inputs, the output data type is the same as the input data type.
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• For fixed point inputs, the block provides the output with an integer bit growth of 14 bits
when you select the Enable noise variance input port parameter and with an integer bit
growth of 3 bits when you clear the parameter.

• When the Decision type parameter is set to Hard, the output data type is Boolean for any
supported input data type.

Data Types: single | double | int8 | int16 | int32 | Boolean | fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

valid — Valid output data indication
scalar

Control signal that indicates if data from the data output port is valid. When this value is 1 (true), the
block returns valid data on the data output port. When this value is 0 (false), the values on the data
output port are not valid.

Dependencies

To enable this port, set the Output type parameter to Scalar.
Data Types: Boolean

ready — Indicates block is ready
scalar

Control signal that indicates when the block is ready to accept new input data. When this value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores the input data in the next time step.

The ready signal remains 0 (false) until the block outputs data of the corresponding input data
symbol. The number of clock cycles the ready signal remains 0 (false) depends on the selected
modulation type.

Dependencies

To enable this port, set the Output type parameter to Scalar.
Data Types: Boolean
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Parameters
Modulation source — Source for modulation type
Input port (default) | Property

To specify the modulation type from the Modulation parameter, select Property. To specify the
modulation type from the modIdx port during run time, select Input port.

Modulation — Modulation type
QPSK (default) | 8-PSK | 16-APSK | 32-APSK | pi/2-BPSK

Select the modulation type.

Dependencies

To enable this parameter, set the Modulation source parameter to Property.

Code rate — Code rate
3/4 (default) | 2/3 | 4/5 | 5/6 | 8/9 | 9/10

Select the code rate.

Dependencies

To enable this parameter set the Modulation source parameter to Property and the Modulation
parameter to 16-APSK or 32-APSK.

Decision type — Type of demapping
Approximate log-likelihood ratio (default) | Hard

Select the demapping type.

• Approximate log-likelihood ratio — Demap data symbols to LLR values. This LLR value
for each bit indicates how likely the bit is 1 or 0.

• Hard — Demap data symbols to bits 1 or 0.

Output type — Type of output
Vector (default) | Scalar

Select the type of output as Vector or Scalar.

• Vector — Use this option to receive data in 8-element column vector format from the output data
port.

• Scalar — Use this option to receive data in scalar format from the output data port.

Unit average power — Unit average power
off (default) | on

Select this parameter to perform symbol demodulation with a normalized constellation. Clear this
parameter to perform symbol demodulation using the constellation defined as per the standard [1].

When you specify 0, 1, or 4 using the modIdx input port or set the Modulation parameter to QPSK,
8-PSK, or pi/2-BPSK, the block ignores this parameter during its operation.
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Dependencies

To enable this parameter, set the Modulation source parameter to Input port or set the
Modulation source to Property and the Modulation parameter to 16-APSK or 32-APSK.

Enable noise variance input port — Enable noise variance port
off (default) | on

Select this parameter to enable the noise variance input port.
Dependencies

To enable this parameter, set the Decision type parameter to Approximate log-likelihood
ratio.

Algorithms
The block uses the soft-decision approximate LLR or hard-decision algorithms to demodulate complex
data symbols according to the DVB-S2 standard.

In soft-decision approximate LLR, the block computes the approximate LLR by using the nearest
constellation point to the received signal with a 0 (or 1) at that bit position. The LLR for a bit b can be
defined as:

LLR(b) = 1
σ2 min

s ∈ S1
z − s

2
− min

s ∈ S0
z − s

2

where σ2 is the noise variance, z is the received sequence, s is a symbol from the constellation, and
S0, S1 is the set of symbols that corresponds to bits being 0 and 1 respectively. For more information,
see [2].

In hard-decision algorithm, the block computes the magnitude and phase angle of the input data and
outputs the data bits based on the decision boundaries. For more information, see [3].

Latency

The latency of the block varies based on the input data type, modulation type, decision type, and
output type.

This figure shows a sample output and latency of the block for input data of type fixdt(1,16,14)
when you set the Modulation source parameter to Property, the Modulation parameter to QPSK,
the Decision type parameter to Approximate log-likelihood ratio, and the Output type
parameter to Scalar, and select the Enable noise variance input port parameter. The latency of
the block is 41 clock cycles.
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This figure shows a sample output and latency of the block for input data of type fixdt(1,16,14)
when you set the Modulation source parameter to Input port, the Decision type parameter to
Hard, and the Output type parameter to Vector, and specify the modIdx input port value as 3 (32-
APSK). The latency of the block is 59 clock cycles.

Performance

The performance of the synthesized HDL code varies with the target and synthesis options. It also
varies based on the input data type and the selected modulation type, decision type, output type, and
noise variance data type.

This table shows the resource and performance data synthesis results of the block for an input data of
type fixdt(1,16,14) when you set the Modulation type parameter to Input port, the Decision
type parameter to Approximate log-likelihood ratio, and the Output type parameter to
Scalar, as well as select the Enable noise variance input port parameter and specify the nVar
data type as fixdt(0,10,8). The generated HDL code is targeted to a Xilinx Zynq- 7000 ZC706
evaluation board. The design achieves a clock frequency of 253.49 MHz.

Slice LUTs Slice Registers DSPs Block RAM
12214 12956 83 0

Version History
Block enhancements
Behavior changed in R2022a

In 2021b, the block was named DVBS2 Symbol Demodulator, and now in R2022a it is renamed to
DVB-S2 Symbol Demodulator.

In 2022a, the block supports demodulation of a complex constellation symbol to a set of data bits.
Also, the block provides parameter options to select:

• Output type — Scalar or Vector
• Decision type — Hard or Approximate log-likelihood ratio
• Noise variance input port

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Functions
dvbsapskdemod
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Blocks
DVBS-APSK Demodulator Baseband

Introduced in R2021b
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WLAN LDPC Decoder
Decode LDPC code according to WLAN standard
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The WLAN LPDC Decoder block implements a low-density parity-check (LDPC) decoder using a
layered belief propagation with min-sum approximation and normalized min-sum approximation
algorithms for decoding LDPC codes according to the wireless local area network (WLAN) standards
IEEE 802.11n, 802.11ac, 802.11ax, and 802.11ad. The block accepts log-likelihood ratio (LLR) values,
a stream of control signals, a block length, and a code rate as inputs and outputs decoded bits, a
stream of control signals, and a signal that indicates when the block is ready to accept new inputs.

The WLAN LPDC Decoder block supports scalar inputs and vector inputs. The block supports early
termination to help improve decoding performance and convergence speeds at high signal-noise-ratio
(SNR) conditions. For more information about WLAN standards, see [1], [2], and [3].

The block provides an architecture suitable for HDL code generation and hardware deployment. You
can use this block in the WLAN modem development.

Ports
Input

data — LLR values
scalar | vector

LLR values, specified as a scalar or a vector of size 8-by-1.

For HDL code generation, specify this value in signed fixed point format. The input word length
must be in the range from 4 to 16.
Data Types: int8 | int16 | signed fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
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Data Types: bus

blkLenIdx — Block length index
0 | 1 | 2

Block length index, specified as 0, 1, or 2. The block length varies based on the specified block length
index.

This table shows the block length index values and their corresponding block lengths.

blkLenIdx Value Block Length
0 648
1 1296
2 1944

When you specify a value other than 0, 1, or 2, the block discards the frame and sets the nextFrame
output port to 1.

Dependencies

To enable this port, set the Standard parameter to IEEE 802.11 n/ac/ax.
Data Types: fixdt(0,2,0)

codeRateIdx — Code rate index
0 | 1 | 2 | 3

Code rate index, specified as 0, 1, 2, or 3. The code rate varies based on the standard and code rate
index that you specify.

This table shows the code rate index values and their corresponding code rates based on the
standard.

Standard Parameter Value codeRateIdx Value Code Rate
IEEE 802.11 n/ac/ax 0 1/2

1 2/3
2 3/4
3 5/6

IEEE 802.11 ad 0 1/2
1 5/8
2 3/4
3 13/16

Data Types: fixdt(0,2,0)

iter — Number of iterations
scalar

Number of iterations, specified as an unsigned integer in the range from 1 to 63.
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If you specify an iter value greater than 63 or less than 1, the block overrides your specification and
sets the iter value to 8 before decoding.
Dependencies

To enable this port, set the Decoding termination criteria parameter to Max and the Source for
number of iterations parameter to Input port.
Data Types: uint8

Output

data — Decoded bits
scalar | vector

Decoded bits, returned as a Boolean scalar or a Boolean vector of size 8-by-1.

For a vector input, if the output data length is not a multiple of 8, the block appends zeros at the end
of the output to make it as a multiple of 8.

For example, when you set the Standard parameter to IEEE 802.11 n/ac/ax, the blkLenIdx
input port to 0, and the codeRateIdx input port to 2, instead of the block returning the 486 samples,
the block appends two zeros to the 486 samples to make it as a multiple of 8. In this case, the block
returns 488 samples in 61 (488/8) clock cycles.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

nextFrame — Block ready indicator
Boolean scalar

Block ready indicator, returned as a Boolean scalar.

The block sets this signal to 1 (true) when the block is ready to accept the start of the next frame. If
the block receives an input ctrl.start signal while nextFrame is 0 (false), the block discards the
frame in progress and begins processing the new data.
Data Types: Boolean

actIter — Actual number of iterations
scalar

Actual number of iterations the block takes to decode the output, returned as a scalar.
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Dependencies

To enable this port, set the Decoding termination criteria parameter to Early.
Data Types: uint8

parityCheck — Parity check status indicator
scalar

Parity check status indicator, returned as a Boolean scalar. The port indicates the status of the parity
check after the decoding operation.

• 0 — Indicates that the parity check failed
• 1 — Indicates that the parity check passed

Dependencies

To enable this port, select the Enable parity check output port parameter.
Data Types: Boolean

Parameters
Standard — Type of standard
IEEE 802.11 n/ac/ax (default) | IEEE 802.11 ad

Select the type of standard. For more information, see [1], [2], and [3].

When you set the Standard parameter to IEEE 802.11 ad, the blkLenIdx input port is disabled
and the block considers a fixed block length of 672 for its operation.

Algorithm — LDPC decoding algorithm
Min-sum (default) | Normalized min-sum

Select the type of LDPC decoding algorithm. For more information, see “Algorithm” on page 1-261.

• Min-sum — Use this option to select the layered belief propagation algorithm with a min-sum
approximation. For more information, see “Min-Sum Approximation” on page 1-263.

• Normalized min-sum — Use this option to select the layered belief propagation algorithm with
a normalized min-sum approximation. For more information, see “Normalized Min-Sum
Approximation” on page 1-263.

Scaling factor — Scaling factor for normalized min-sum decoding
0.75 (default) | scalar in the range from 0.5 to 1, incremented by 0.0625

Specify the scaling factor as scalar in the range from 0.5 to 1, incremented by 0.0625.

Dependencies

To enable this parameter, set the Algorithm parameter to Normalized min-sum.

Decoding termination criteria — Termination criteria
Max (default) | Early

Select the decoding termination criteria.
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• Max — Terminate decoding when the block reaches the number of iterations specified in the block
mask or through the iter input port.

• Early — Terminate decoding when the block meets all of the parity checks or when the block
reaches the maximum number of iterations provided in the block mask.

Source for number of iterations — Source selection for number of iterations
Property (default) | Input port

Select the source for specifying the number of iterations.

You can set the number of iterations by using either an input port or a parameter.

• Property — Select this option to enable the Number of iterations parameter.
• Input port — Select this option to enable the iter port.

Dependencies

To enable this parameter, set the Decoding termination criteria parameter to Max.

Number of iterations — Number of decoding iterations
8 (default) | integer in the range from 1 to 63

Specify the number of decoding iterations.

Dependencies

To enable this parameter, set the Decoding termination criteria parameter to Max and the Source
for number of iterations parameter to Property.

Maximum number of iterations — Maximum number of decoding iterations
8 (default) | integer in the range from 1 to 63

Specify the maximum number of decoding iterations.

Dependencies

To enable this parameter, set the Decoding termination criteria parameter to Early.

Enable parity check output port — Parity check status
off (default) | on

Select this parameter to enable the parityCheck output port to view the status of the parity check.

Algorithms
This figure shows the architecture block diagram of the WLAN LDPC Decoder block. The Controller
block controls the layer and iteration count of the decoding process. The Variable node RAM block
stores the variable node (VN) messages, and the Check node RAM block stores the check node (CN)
messages. The Functional Unit block calculates the VN messages and CN messages based on the
layered belief propagation and either the normalized min-sum approximation algorithm or the min-
sum approximation algorithm. The Termination/Parity check status block calculates the parity checks
and provides the parity check status after each iteration. For more information about decoding
algorithms, see the following sections.
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Belief Propagation Decoding

The implementation of the belief propagation algorithm is based on the decoding algorithm presented
in [4]. For a transmitted LDPC-encoded codeword, c, where c = (c0, c1, ..., cn− 1), the input to the

LDPC decoder is the log-likelihood ratio (LLR) value L(ci) = log
Pr(ci = 0 channel output for ci)
Pr(ci = 1 channel output for ci)

.

In each iteration, the key components of the algorithm are updated based on these equations:

L(r ji) = 2 atanh ∏
i′ ∈ V j\i

tanh 1
2L(qi′ j) ,

L(qi j) = L(ci) + ∑
j′ ∈ Ci\ j

L(r j′i), initialized as L(qi j) = L(ci) before the first iteration, and

L(Qi) = L(ci) + ∑
j′ ∈ Ci

L(r j′i).

At the end of each iteration, L(Qi) is an updated estimate of the LLR value for the transmitted bit ci.
The value L(Qi) is the soft-decision output for ci. If L(Qi) < 0, the hard-decision output for ci is 1.
Otherwise, the output is 0.

Layered Belief Propagation Decoding

The implementation of the layered belief propagation algorithm is based on the decoding algorithm
presented in [5], Section II.A. The decoding loop iterates over subsets of rows (layers) of the PCM.
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For each row, m, in a layer and each bit index, j, the implementation updates the key components of
the algorithm based on these equations:

(1) L(qm j) = L(q j)− Rm j,

(2) Am j = ∑
n   ∈   N m

n ≠ j

ψ(L(qmn)),

(3) sm j = ∏
n   ∈   N m

n ≠ j

sign(L(qmn)),

(4) Rm j = − sm jψ(Am j), and

(5) L(q j) = L(qm j) + Rm j.

For each layer, the decoding equation (5) works on the combined input obtained from the current LLR
inputs L(qm j) and the previous layer updates Rm j.

Because only a subset of the nodes is updated in a layer, the layered belief propagation algorithm is
faster compared to the belief propagation algorithm. To achieve the same error rate as attained with
belief propagation decoding, use half the number of decoding iterations when using the layered belief
propagation algorithm.

Min-Sum Approximation

The implementation of the min-sum approximation algorithm follows the layered belief propagation
algorithm with equation (2) replaced by

Am j = min
n   ∈   N m

n ≠ j

( L(qmn)   ⋅ α),

where α is 1.

Normalized Min-Sum Approximation

The implementation of the normalized min-sum approximation algorithm follows the layered belief
propagation algorithm with equation (2) replaced by

Am j = min
n   ∈   N m

n ≠ j

( L(qmn)   ⋅ α),

where α is in the range (0, 1] and is the scaling factor specified by the Scaling factor parameter.
This equation is an adaptation of equation (4) presented in [6].

Latency

The latency of the block varies based on the selected Standard parameter, the values of the
blkLenIdx and codeRateIdx input ports, and the number of iterations. Because the latency varies,
use the nextFrame control signal output port to determine when the block is ready for a new input
frame.

 WLAN LDPC Decoder

1-263



Scalar Input

The latency of the block is equal to r x (t + m x 9) + d. In this calculation, r is the number of
iterations, t is twice the total number of non –1 elements in the PCM, m is the number of rows in the
PCM, and d is the pipeline delays. For scalar inputs, d is 13.

This figure shows a sample output and latency of the WLAN LDPC Decoder block for a scalar input
when you set the Standard parameter to IEEE 802.11 n/ac/ax, the Algorithm parameter to
Min-sum, the Number of iterations parameter to 8 and the blkLenIdx and the codeRateIdx input
port values both to 0 and 0. The latency of the block is 2933 clock cycles.

Vector Input

The latency of the block is equal to r x (t + m x 9) + d. In this calculation, r is number of iterations, t
is twice the total number of non –1 elements in the PCM, m is the number of rows in the parity check
matrix, and d is the pipeline delays. For vector inputs, when you set the Standard parameter to:

• IEEE 802.11 n/ac/ax, d is 35, 32, and 35 for blkLenIdx input port values 0, 1, and 2,
respectively

• IEEE 802.11 ad, d is 26

This figure shows a sample output and latency of the WLAN LDPC Decoder block for a vector input
when you set the Standard parameter to IEEE 802.11 ad, the Algorithm parameter to
Normalized min-sum, the Number of iterations parameter to 8, and the codeRateIdx input port
value to 0. The latency of the block is 1518 clock cycles.
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SNR and BER Plots

This section shows the SNR and BER plots of the block for specified inputs and parameter settings.

This plot shows the performance of the block for a 4 bit LLR input when you set the Standard
parameter to IEEE 802.11 n/ac/ax, the Algorithm parameter to Min-sum, the blkLenIdx input
port value to 0 (block length of 648) and the codeRateIdx input port value to 0, 1, 2, and 3 (code
rates of 1/2, 2/3, 3/4, and 5/6, respectively).

This plot shows the performance of the block for a 4 bit LLR input when you set the Standard
parameter to IEEE 802.11 ad, the Algorithm parameter to Normalized min-sum, and the
codeRateIdx input port value to 0, 1, 2, and 3 (code rates of 1/2, 5/8, 3/4, and 13/16, respectively).
In this case, the block length is fixed to 672.
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Performance

The performance of the synthesized HDL code varies with the target and synthesis options. It also
varies based on the type of algorithm, decoding termination criteria, and the word length of the input
LLR values.

This table shows the resource and performance data synthesis results of the block for the supported
WLAN standards when you set the Algorithm parameter to Min-sum, the Number of iterations
parameter to 8, and the input LLR values as data type fixdt(1,4,0). The generated HDL is
targeted to the Xilinx ZynqUltrascale+ MPSoC - ZCU102 Evaluation Board.
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Standard Input Data Slice LUTs Slice Registers Block
RAMs

Maximum Frequency
in MHz

IEEE 802.11
n/ac/ax

Scalar 17049 16672 0.5 409.50
Vector 21043 19721 0.5 404.20

IEEE 802.11
ad

Scalar 6602 7389 1 453.31
Vector 9036 8570 0.5 453.31

References
[1] IEEE Std 802.11™-2016 (Revision of IEEE Std 802.11-2012). “Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for
Information technology — Telecommunications and information exchange between systems.
Local and metropolitan area networks — Specific requirements.

[2] IEEE STD 802.11ad™-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std
802.11ae™-2012 and IEEE Std 802.11a™-2012). “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. Amendment 4: Enhancements for
Very High Throughput Operation in Bands below 6 GHz.” IEEE Standard for Information
technology — Telecommunications and information exchange between systems. Local and
metropolitan area networks — Specific requirements.

[3] IEEE Std 802.11ah™-2016 (Amendment to IEEE Std 802.11-2016 as amended by IEEE Std
802.11ai™-2016). “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Amendment 2: Sub 1 GHz License Exempt Operation.” IEEE Standard
for Information technology — Telecommunications and information exchange between
systems. Local and metropolitan area networks — Specific requirements.

[4] Gallager, R. “Low-Density Parity-Check Codes.” IEEE Transactions on Information Theory 8, no. 1
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
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HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also

Introduced in R2021b
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CCSDS RS Encoder
Encode message into RS codeword according to CCSDS standard
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The CCSDS RS Encoder block encodes message symbols into a Reed-Solomon (RS) codeword
according to the Consultative Committee for Space Data Systems (CCSDS) standard [1]. The block
accepts message symbols and a samplecontrol bus and outputs encoded codeword data, a
samplecontrol bus, and a nextFrame signal that indicates when the block is ready to accept new
input message symbols.

The block also supports shortened message lengths. You can use this block in a CCSDS transmitter
for satellite communication. The block provides an architecture suitable for HDL code generation and
hardware deployment.

Ports
Input

data — Input message symbols
integer in the range 0 to 255

Input message symbols, specified as an integer in the range 0 to 255. Every integer represents a
symbol.

The number of input message symbols per frame must be equal to p × I, where p can be any integer
in the range from 1 to k. k is the message length and I is the interleaving depth specified on the block
mask.

To provide proper outputs, the block requires a minimum frame gap of (255 – k) × I clock cycles
between the input frames.

double and single data types are allowed for simulation, but not for HDL code generation. For HDL
code generation, specify this value in fixdt(0,8,0) or uint8 format.
Data Types: double | single | uint8 | fixdt(0,8,0)

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
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• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

Output

data — Encoded codeword symbols
integer in the range 0 to 255

Encoded codeword symbols, returned as an integer in the range 0 to 255. The output data type is the
same as the input data type.

The block outputs N + (255 – k) × I number of codeword symbols per frame, where N is the number
of input message symbols. k is the message length specified using the Message length (k)
parameter and I is the interleaving depth specified using the Interleaving depth (I) parameter.
Data Types: double | single | uint8 | fixdt(0,8,0)

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

nextFrame — Block ready indicator
Boolean scalar

Block ready indicator, returned as a Boolean scalar.

The block sets this signal to 1 (true) when the block is ready to accept the start of the next frame. If
the block receives an input ctrl.start signal while nextFrame is 0 (false), the block discards the
frame in progress and begins processing the new data.
Data Types: Boolean

Parameters
Message length (k) — Length of message
223 (default) | 239

Select the message length.

Interleaving depth (I) — Depth of interleaving
1 (default) | 2 | 3 | 4 | 5 | 8
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Select the interleaving depth.

Algorithms
To form an RS codeword, the CCSDS RS Encoder block generates parity symbols and appends them
to the input message symbols. RS code is a cyclic code, so the input message symbols are considered
message polynomial coefficients and the code generator a generator polynomial. The generator
polynomial divides the message polynomial to obtain a remainder polynomial that represents parity
symbols. This figure shows the implementation of the block when you set the Message length (k)
parameter to 239 and the Interleaving depth (I) parameter to 1. The encoding circuit in the figure
shows the polynomial division logic.

In this figure, g0, g1, g2 g3, and so on up to gn – 1 represent the generator polynomial coefficients and
D0, D1, D2, D3, and so on up to Dn – 1 represent registers, where n is equal to 255 – k and k is the
Message length (k) parameter value specified on the block mask. The registers store the parity
symbols.

The GF multiplier used in the circuit stores all possible GF multiplication outputs for the encoder.
These GF multipliers are implemented on the hardware as LUTs. These LUTs consume more
hardware resources, so an efficient bit-serial multiplication algorithm [3] is used for the GF multiplier
logic. This algorithm leverages the dual-basis representation and makes use of the field trace concept
of the Galois field to compute the product. In this process, the values in the registers are updated for
every input message symbol. When the last input message symbol of the current frame arrives, the
values in the registers are considered parity symbols for the frame.
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Similarly, if the Interleaving depth (I) parameter is set to 3, three sets of registers are required for
each codeword to store the parity symbols. The number of GF adders and multipliers remains the
same, 16, which is equal to 255 – k. For each input message symbol, the consecutive register sets Set
1, Set 2, or Set 3 are used in the parity computation. When the last input message symbol of the
current frame arrives, the parity symbols are deinterleaved from each set to form an output parity
sequence as shown in this figure.

Latency

The block captures output bits at valid cycles. The latency of the block is 3 clock cycles.

This figure shows a sample output and latency of the CCSDS RS Encoder block when you set the
Message length (k) and Interleaving depth (I) parameter values to 223 and 4, respectively.

Performance

The performance of the synthesized HDL code varies with the target and synthesis options. It also
varies based on the message length and interleaving depth.

This table shows the resource and performance data synthesis results when you specify the input in
fixdt(0,8,0) format and set the Message length (k) and Interleaving depth (I) parameter
values to 223 and 4, respectively. The generated HDL code is targeted to the Xilinx Zynq- 7000
ZC706 evaluation board. The design achieves a clock frequency of 328 MHz.
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Resource Number Used
LUTs 3482
Registers 2191
DSPs 0
Block RAMs 0

References
[1] TM Synchronization and Channel Coding. Recommendation for Space Data System Standards.

CCSDS 131.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, September 2017.

[2] TM Synchronization and Channel Coding. Summary of Concept and Rationale CCSDS 130.1-G-3.
Green Book. Issue 3, June 2020.

[3] Hsu, In-Shek , et al. "The VLSI Implementation of a Reed— Solomon Encoder Using Berlekamp’s
Bit-Serial Multiplier Algorithm." IEEE Transactions on Computers, vol. C–33, no. 10 (October
1984): 906–11. https://doi.org/10.1109/TC.1984.1676351.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).
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Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
CCSDS RS Decoder

Functions
ccsdsRSDecode | ccsdsRSEncode

Introduced in R2022a
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DVB-S2 LDPC Decoder
Decode LDPC code according to DVB-S2 standard
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The DVB-S2 LPDC Decoder block implements a low-density parity-check (LDPC) decoder using
layered belief propagation with min-sum approximation and normalized min-sum approximation
algorithms for decoding LDPC codes according to the Digital Video Broadcast Satellite Second
Generation (DVB-S2) standard. The block accepts log-likelihood ratio (LLR) values, a stream of
control signals, a frame type, and a code rate as inputs and outputs decoded bits, a stream of control
signals, and a signal that indicates when the block is ready to accept new inputs.

The DVB-S2 LPDC Decoder block supports early termination to help improve decoding performance
and convergence speeds at high signal-to-noise-ratio (SNR) conditions. The block supports scalar
values through the input/output (I/O) interface. It also supports forward error correction (FEC)
frames of type normal and short with all the code rates supported by the DVB-S2 standard. For more
information about the DVB-S2 standard, see [1].

The block provides an architecture suitable for HDL code generation and hardware deployment. You
can use this block in DVB-S2 modem development.

Ports
Input

data — LLR values
scalar

LLR values, specified as a scalar.

For HDL code generation, specify this value in signed fixed-point format. The input word length must
be in the range from 4 to 16.
Data Types: int8 | int16 | signed fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
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• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

frameType — Type of FEC frame
scalar

Type of FEC frame, specified as a Boolean scalar.

• 0 — Indicates a normal frame
• 1 — Indicates a short frame

Dependencies

To enable this port, set the FEC frame source parameter to Input port.
Data Types: Boolean

codeRateIdx — Code rate index
integer

Code rate index, specified as an integer. Code rate index values range from 0 to 10. Each code rate
index value represents a specific code rate, as shown in this table.

codeRateIdx Value Code Rate
0 1/4
1 1/3
2 2/5
3 1/2
4 3/5
5 2/3
6 3/4
7 4/5
8 5/6
9 8/9
10 9/10 (not supported for short frame)

You must specify this value in the fixdt(0,4,0) format.

Dependencies

To enable this port, do one of the following:

• Set the FEC frame source parameter to Input port.
• Set the FEC frame source parameter to Property and the Code rate source parameter to

Input port.

Data Types: fixdt(0,4,0)

1 Blocks

1-276



iter — Number of iterations
scalar

Number of iterations, specified as an unsigned integer in the range from 1 to 63.

If you specify an iter value greater than 63 or less than 1, the block overrides your specification and
sets the iter value to 8 before decoding.

Dependencies

To enable this port, set the Decoding termination criteria parameter to Max or Early and the
Source for number of iterations parameter to Input port.
Data Types: uint8

Output

data — Decoded bits
scalar

Decoded bits, returned as a Boolean scalar.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
Data Types: bus

nextFrame — Block ready indicator
scalar

Block ready indicator, returned as a Boolean scalar.

The block sets this signal to 1 (true) when the block is ready to accept the start of the next frame. If
the block receives an input ctrl.start signal while nextFrame is 0 (false), the block discards the
frame in progress and begins processing the new data.
Data Types: Boolean

parityCheck — Parity check status indicator
scalar

Parity check status indicator, returned as a Boolean scalar. The port indicates the status of the parity
check after the decoding operation.
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• 0 — Indicates that the parity check failed
• 1 — Indicates that the parity check passed

Dependencies

To enable this port, select the Enable parity check output port parameter.
Data Types: Boolean

actIter — Actual number of iterations
scalar

Actual number of iterations the block takes to decode the output, returned as a scalar.

Dependencies

To enable this port, set the Decoding termination criteria parameter to Early.
Data Types: uint8

Parameters
FEC frame source — Source for FEC frame
Input port (default) | Property

Select the FEC frame source as Input port or Property.

• Property — Select this option to enable the FEC frame type parameter.
• Input port — Select this option to enable the frameType port.

FEC frame type — FEC frame type
Normal (default) | Short

Select the FEC frame type as Normal or Short.

Dependencies

To enable this parameter, set the FEC frame source parameter to Property.

Code rate source — Source for code rate
Property (default) | Input port

Select the code rate source as Property or Input port.

• Property — Select this option to enable the Code rate parameter.
• Input port — Select this option to enable the codeRateIdx port.

Dependencies

To enable this parameter, set the FEC frame source parameter to Property.

Code rate — Code rate
1/4 (default) | 1/3 | 2/5 | 1/2 | 3/5 | 2/3 | 3/4 | 4/5 | 5/6 | 8/9 | 9/10

Select the code rate.
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Note Code rate of 9/10 is not supported for short frame.

Dependencies

To enable this parameter, set the FEC frame source parameter to Property and set the Code rate
source parameter to Property.

Algorithm — LDPC decoding algorithm
Min-sum (default) | Normalized min-sum

Select the type of LDPC decoding algorithm. For more information, see “Algorithm” on page 1-280.

• Min-sum — Use this option to select the layered belief propagation algorithm with a min-sum
approximation. For more information, see “Min-Sum Approximation” on page 1-282.

• Normalized min-sum — Use this option to select the layered belief propagation algorithm with
a normalized min-sum approximation. For more information, see “Normalized Min-Sum
Approximation” on page 1-282.

Scaling factor — Scaling factor for normalized min-sum decoding
0.75 (default) | scalar in the range 0.5 to 1, incremented by 0.0625

Specify the scaling factor as a scalar in the range 0.5 to 1, incremented by 0.0625.

Dependencies

To enable this parameter, set the Algorithm parameter to Normalized min-sum.

Decoding termination criteria — Termination criteria
Max (default) | Early

Select the decoding termination criteria.

• Max — Terminate decoding when the block reaches the number of iterations specified in the block
mask or through the iter input port.

• Early — Terminate decoding when the block meets all of the parity checks or when the block
reaches the maximum number of iterations provided in the block mask.

Source for number of iterations — Source selection for number of iterations
Property (default) | Input port

Select the source for specifying the number of iterations.

You can set the number of iterations by using either an input port or a parameter.

• Property — Select this option to enable the Number of iterations parameter.
• Input port — Select this option to enable the iter port.

Number of iterations — Number of decoding iterations
8 (default) | integer in the range from 1 to 63

Specify the number of decoding iterations.
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Dependencies

To enable this parameter, set the Decoding termination criteria parameter to Max and the Source
for number of iterations parameter to Property.

Maximum number of iterations — Maximum number of decoding iterations
8 (default) | integer in the range from 1 to 63

Specify the maximum number of decoding iterations.

Dependencies

To enable this parameter, set the Decoding termination criteria parameter to Early and set the
Source for number of iterations parameter to Property.

Enable parity check output port — Parity check status
off (default) | on

Select this parameter to enable the parityCheck output port to view the status of the parity check.

Algorithms
This figure shows the architecture block diagram of the DVB-S2 LDPC Decoder block. The Controller
block controls the layer and iteration count of the decoding process. The Variable node RAM block
stores the variable node (VN) messages, and the Check node RAM block stores the check node (CN)
messages. The Functional Unit block calculates the VN messages and CN messages based on layered
belief propagation and either the normalized min-sum approximation algorithm or the min-sum
approximation algorithm. The Termination/Parity check status block calculates the parity checks and
provides the parity check status after each iteration. For more information about decoding
algorithms, see the following sections.
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Belief Propagation Decoding

The implementation of the belief propagation algorithm is based on the decoding algorithm presented
in [2]. For a transmitted LDPC-encoded codeword, c, where c = (c0, c1, ..., cn− 1), the input to the

LDPC decoder is the log-likelihood ratio (LLR) value L(ci) = log
Pr(ci = 0 channel output for ci)
Pr(ci = 1 channel output for ci)

.

In each iteration, the key components of the algorithm are updated based on these equations:

L(r ji) = 2 atanh ∏
i′ ∈ V j\i

tanh 1
2L(qi′ j) ,

L(qi j) = L(ci) + ∑
j′ ∈ Ci\ j

L(r j′i), initialized as L(qi j) = L(ci) before the first iteration, and

L(Qi) = L(ci) + ∑
j′ ∈ Ci

L(r j′i).

At the end of each iteration, L(Qi) is an updated estimate of the LLR value for the transmitted bit ci.
The value L(Qi) is the soft-decision output for ci. If L(Qi) < 0, the hard-decision output for ci is 1.
Otherwise, the output is 0.
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Layered Belief Propagation Decoding

The implementation of the layered belief propagation algorithm is based on the decoding algorithm
presented in [3], Section II.A. The decoding loop iterates over subsets of rows (layers) of the PCM.
For each row, m, in a layer and each bit index, j, the implementation updates the key components of
the algorithm based on these equations:

(1) L(qm j) = L(q j)− Rm j,

(2) Am j = ∑
n   ∈   N m

n ≠ j

ψ(L(qmn)),

(3) sm j = ∏
n   ∈   N m

n ≠ j

sign(L(qmn)),

(4) Rm j = − sm jψ(Am j), and

(5) L(q j) = L(qm j) + Rm j.

For each layer, the decoding equation (5) works on the combined input obtained from the current LLR
inputs L(qm j) and the previous layer updates Rm j.

Because only a subset of the nodes is updated in a layer, the layered belief propagation algorithm is
faster compared to the belief propagation algorithm. To achieve the same error rate as attained with
belief propagation decoding, use half the number of decoding iterations when using the layered belief
propagation algorithm.

Min-Sum Approximation

The implementation of the min-sum approximation algorithm follows the layered belief propagation
algorithm with equation (2) replaced by

Am j = min
n   ∈   N m

n ≠ j

( L(qmn)   ⋅ α),

where α is 1.

Normalized Min-Sum Approximation

The implementation of the normalized min-sum approximation algorithm follows the layered belief
propagation algorithm with equation (2) replaced by

Am j = min
n   ∈   N m

n ≠ j

( L(qmn)   ⋅ α),

where α is in the range [0, 1] and is the scaling factor specified by the Scaling factor parameter.
This equation is an adaptation of equation (4) presented in [4].

Latency

The latency of the block varies based on the frame type, code rate, and number of iterations.
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The latency of the block is equal to (r x t) + d + inputLen. In this calculation, r is the number of
iterations, t is the number of clocks required to decode one iteration, d is the pipeline delays, which
are a fixed value equal to 9, and inputLen is the length of the input data.

The table shows the number of clocks the block requires to decode one iteration for normal and short
frame types with different code rates.

Code Rate Number of Clocks Per Iteration
Normal Short

1/4 20,520 5328
1/3 20,160 5040
2/5 19,872 4968
1/2 18,000 4360
3/5 19,008 4752
2/3 14,880 3720
3/4 14,040 3168
4/5 13,536 2880
5/6 13,200 2896
8/9 10,400 2600
9/10 10,244 Code rate not supported for

short frame

This figure shows a sample output and latency of the DVB-S2 LDPC Decoder block for the default
configuration when you specify frameType as 0 (Normal frame) and codeRateIdx as 5 (2/3 code
rate). The latency of the block is 183,849 clock cycles.

EbNo and BER Plots

This section shows the EbNo and BER plots of the block for specified inputs and parameter settings.

This plot shows the performance of the block for a 4 bit QPSK modulated LLR input of short and
normal frames with code rates 1/2 and 3/4, respectively, when you set the Algorithm parameter to
Min-sum.
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This plot shows the performance of the block for a 4 bit 16-APSK modulated LLR input of short and
normal frames with code rates 3/5 and 5/6, respectively, when you set the Algorithm parameter to
Min-sum.
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Performance

The performance of the synthesized HDL code varies with the target and synthesis options. It also
varies based on the type of algorithm, frame type source, code rate source, decoding termination
criteria, and word length of the input LLR values.

This table shows the resource and performance data synthesis results of the block for the supported
DVB-S2 standard when you specify the input LLR values in fixdt(1,4,0) format and set the
Algorithm parameter to Min-sum, the Number of iterations parameter to 8, and the FEC frame
source parameter to Input port. The generated HDL is targeted to the Xilinx ZynqUltrascale+
MPSoC - ZCU102 Evaluation Board.

Slice LUTs Slice Registers Block RAMs Maximum Frequency in MHz
16,239 10,642 157.5 324.04
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.
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See Also
Blocks
DVB-S2 BCH Decoder

Introduced in R2022a
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Symbol Demodulator
Demodulate complex constellation symbol to set of LLR values or data bits
Library: Wireless HDL Toolbox / Modulation

Description
The Symbol Demodulator block demodulates a complex constellation symbol to a set of log-likelihood
ratio (LLR) values or data bits. The block accepts equalized complex data symbols and a
samplecontrol bus or a valid signal and outputs demodulated LLR values or data bits and a
samplecontrol bus or a valid signal based on the selected output type. The block provides an
option to select the output type as vector or scalar and provides an input port to specify the noise
variance.

The block supports BPSK, QPSK, 8-PSK, 16-PSK, 32-PSK, 16-QAM, 64-QAM, and 256-QAM
modulations. The number of demodulated LLR values or data bits for a given symbol depends on the
modulation type, as shown in this table.

Modulation Type Number of LLR Values or Data Bits per
Symbol

BPSK 1
QPSK 2
8-PSK 3
16-PSK 4
16-QAM 4
32-PSK 5
64-QAM 6
256-QAM 8

This block provides an interface and architecture for HDL code generation with HDL Coder. You can
use this block in the development of a digital receiver.

Ports
Input

data — Data symbols
real-valued scalar | complex-valued scalar

Data symbols, specified as a real- or complex-valued scalar.

double and single data types are supported for simulation, but not for HDL code generation.
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For HDL code generation, the input data type must be signed fixed point and the maximum
input word length the block supports is 32 bits.
Data Types: single | double | int8 | int16 | int32 | signed fixed point

valid — Valid input data indication
scalar

Control signal that indicates if the input data is valid. When this value is 1 (true), the block accepts
the values on the data input port. When this value is 0 (false), the block ignores the values on the
data input port.

Dependencies

To enable this port, set the Output type parameter to Scalar.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more detail, see “Sample Control Bus”.

Dependencies

To enable this port, set the Modulation source parameter to Input port and set the Output type
parameter to Vector.
Data Types: bus

modSel — Modulation selection
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Modulation selection, specified as 0, 1, 2, 3, 4, 5, 6, or 7. Each value represents a specific modulation
type, as shown in this table.

Modulation Selection Value Modulation Type
0 BPSK
1 QPSK
2 8-PSK
3 16-PSK
4 16-QAM
5 32-PSK
6 64-QAM
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Modulation Selection Value Modulation Type
7 256-QAM

If you specify a value other than the values listed in this table or greater than the value specified on
the block mask using the Maximum modulation parameter, the block displays a warning message
and applies BPSK modulation. The values specified through the modSel port must be with respect to
the value set with the Maximum modulation parameter.

For example, if the Maximum modulation parameter is set to 32-PSK, the block allows the modSel
values 0, 1, 2, 3, 4, and 5. For the modSel values 6 and 7, the block displays a warning message and
applies BPSK modulation.
Dependencies

To enable this port, set the Modulation source parameter to Input port.
Data Types: single | double | fixdt(0,3,0)

nVar — Noise variance
real-valued positive scalar

Noise variance, specified as a real-valued positive scalar.

This value must be of data type fixdt(0,k,m), where k is less than or equal to 32 and m is less than
or equal to k.

When the Output type parameter is set to Scalar or Vector, the block samples the values on this
port when the input valid is set to 1.

double and single data types are supported for simulation, but not for HDL code generation.
Dependencies

To enable this port, select the Enable noise variance input port parameter.
Data Types: single | double | uint8 | uint16 | unsigned fixed point

Output

data — Demodulated LLR values or data bits
scalar | real-valued column vector

Demodulated LLR values or data bits, returned as a scalar when the Output type parameter is set to
Scalar and as a real-valued column vector when the Output type parameter is set to Vector.

If you set the Modulation source parameter to Property, the output vector size is based on the
Modulation parameter value. If you set the Modulation source parameter to Input port, the
output vector size is based on the Maximum modulation parameter value.

• When the Decision type parameter is set to Approximate log-likelihood ratio

• For double and single inputs, the output data type is same as the input data type. double
and single data types are supported for simulation data types are supported for simulation.

• For fixed point inputs, the block provides the output with an integer bit growth of 4 bits
and supports HDL code generation. If the Enable noise variance input port parameter is
selected, the integer bit growth of the output is 13 bits.
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• When the Decision type parameter is set to Hard, the output data type is Boolean irrespective
of the input data type.

Data Types: single | double | Boolean | signed fixed point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more detail, see “Sample Control Bus”.
Dependencies

To enable this port, set the Modulation source parameter to Input port and set the Output type
parameter to Vector.
Data Types: bus

valid — Valid output data indication
scalar

Control signal that indicates if data from the data output port is valid. When this value is 1 (true), the
block returns valid data on the data output port. When this value is 0 (false), the values on the data
output port are not valid.
Dependencies

To enable this port:

• Set the Modulation source parameter to Input port or Property and set the Output type
parameter to Scalar.

• Set the Modulation source parameter to Property and set the Output type parameter to
Vector.

Data Types: Boolean

ready — Indicates block is ready
scalar

Control signal that indicates when the block is ready to accept new input data. When this value is 1
(true), the block accepts input data in the next time step. When this value is 0 (false), the block
ignores the input data in the next time step.

The ready signal remains 0 (false) until the block outputs data of the corresponding input data
symbol. The number of clock cycles that the ready signal remains 0 (false) depends on the selected
modulation type.
Dependencies

To enable this port, set the Output type parameter to Scalar.
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Data Types: Boolean

Parameters
Modulation source — Source for modulation type
Input port (default) | Property

To specify the modulation type from the Modulation parameter, select Property. To specify the
modulation type from the modIdx port during run time, select Input port.

Modulation — Modulation type
BPSK (default) | QPSK | 8-PSK | 16-PSK | 16-QAM | 32-PSK | 64-QAM | 256-QAM

Select the modulation type.

Dependencies

To enable this parameter, set the Modulation source parameter to Property.

Maximum modulation — Maximum modulation type
256-QAM (default) | BPSK | QPSK | 8-PSK | 16-PSK | 16-QAM | 32-PSK | 64-QAM

Select the maximum modulation type. This parameter value defines the modulation types that the
block can support through the modSel port.

For example, when you specify 16-PSK using this parameter, the number of hardware resources the
block generates for the 16-PSK modulation type can accommodate configurations with BPSK, QPSK,
and 8-PSK modulation types specified through the modSel port, but not configurations with the 16-
QAM, 32-PSK, 64-QAM, and 256-QAM modulation types.

Dependencies

To enable this parameter, set the Modulation source parameter to Input port.

Constellation ordering — Constellation ordering
Default (default) | User-defined

Select the constellation ordering, that is, how the block assigns binary words to points of the signal
constellation.

• Default — Specifies default constellation ordering values [2, 3, 1, 0, 6, 7, 5, 4, 14,
15, 13, 12, 10, 11, 9, 8]

• User defined — Enables you to specify custom constellation ordering values using the
Constellation mapping parameter

Dependencies

• To enable this parameter, set the Modulation source parameter to Property and set the
Modulation parameter to 16-QAM, 64-QAM, or 256-QAM.

• To enable this parameter, set the Modulation source parameter to Input port and set the
Maximum modulation parameter to 16-QAM, 64-QAM, or 256-QAM.

Constellation mapping — Constellation mapping
[2, 3, 1, 0, 6, 7, 5, 4, 14, 15, 13, 12, 10, 11, 9, 8] (default) | unique integer-
valued gray-coded row vector
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Specify a unique integer-valued gray-coded row vector corresponding to the modulation type selected
using the Modulation parameter or Maximum modulation parameter. The first element of this
vector corresponds to the top-leftmost point of the constellation, with subsequent elements running
down column-wise, from left to right. The last element corresponds to the bottom rightmost point. For
more information on supported gray codes, see “Specify Gray Code” on page 1-294.

This parameter is specific to the 16-QAM, 64-QAM, and 256-QAM modulation types.

Dependencies

To enable this parameter, set the Constellation ordering parameter to User defined.

Decision type — Type of demapping
Approximate log-likelihood ratio (default) | Hard

Select the demapping type.

• Approximate log-likelihood ratio — Demap data symbols to LLR values. This LLR value
for each bit indicates how likely the bit is 1 or 0.

• Hard — Demap data symbols to bits 1 or 0.

Phase offset — Phase offset for constellation points
pi/2 (default) | pi/4pi/8pi/16pi/320-pi/32-pi/16-pi/8-pi/4-pi/2

Select the phase offset. This parameter is specific to the BPSK, QPSK, 8-PSK, 16-PSK, and 32-PSK
modulation types.

Dependencies

• To enable this parameter, set the Modulation source parameter to Property and set the
Modulation parameter to BPSK, QPSK, 8-PSK, 16-PSK, or 32-PSK.

• To enable this parameter, set the Modulation source parameter to Input port irrespective of
the modulation types specified for the Maximum modulation parameter.

Output type — Type of output
Vector (default) | Scalar

Select the type of output as Vector or Scalar.

• Vector — Use this option to receive data in vector format from the output data port.

When you set the Modulation source parameter to Property, the output vector size is based on
the Modulation parameter value. When you set the Modulation source parameter to Input
port, the output vector size is based on the Maximum modulation parameter value.

• Scalar — Use this option to receive data in scalar format from the output data port.

Normalization method — Scale signal constellation
Unit average power (default) | Custom

Select how the block scales the signal constellation.

• Unit average power — Normalizes the constellation to unit average power
• Custom — Enables you to normalize the constellation by specifying the minimum distance

between the constellation points using the Minimum distance between symbols parameter

 Symbol Demodulator

1-293



Note When you specify 0, 1, 2, 3, or 5 using the modSel input port, the block ignores this parameter
during its operation. This is parameter is applicable for QAM-based modulations.

Dependencies

• To enable this parameter, set the Modulation source parameter to Property and set the
Modulation parameter to 16-QAM, 64-QAM, or 256-QAM.

• To enable this parameter, set the Modulation source parameter to Input port and set the
Maximum modulation parameter to 16-QAM, 64-QAM, or 256-QAM.

Minimum distance between symbols — Minimum distance between symbols
2 (default) | values in the range from 1/32 to 4

Specify the minimum distance between the symbols with the values in the range from 1/32 to 4.

Note When you specify 0, 1, 2, 3, or 5 using the modSel input port, the block ignores this parameter
during its operation. This parameter is applicable for QAM-based modulations.

Dependencies

To enable this parameter, set the Normalization method parameter to Custom.

Enable noise variance input port — Option to enable noise variance port
off (default) | on

Select this parameter to enable the noise variance input port.

More About
Specify Gray Code

The block supports gray codes in constellation mapping with the following convention. A gray code
sequence for k bits is calculated using the following equation:

Gk(b0 b1 b2...bk‐1) = (1 ‐ 2b0) x (2k‐1 + Gk‐1(b1 b2 ....bk‐1)) bi = 0 or 1 for i = 0, 1, 2...k‐1.

The bit order of the in-phase and quadrature must follow the sequence given by the preceding
equation. k is equal to 2 for 16-QAM, 3 for 64-QAM, and 4 for 256-QAM:

Alternatively, the bit order can be one of the following:

• Bit-flipped version of the sequence
• Reversed version of the sequence
• Reversed version of the bit-flipped sequence

For example, consider 16-QAM modulation and two bits mapped to the in-phase and quadrature
phase. The bit order given by the equation is 10 11 01 00. These sequences are also supported:

• 00 01 11 10 (reversed version of sequence)
• 01 00 10 11 (bit-flipped version of the sequence
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• 11 10 00 01 (reversed version of the bit-flipped sequence)

Algorithms
The block uses the approximate LLR algorithm to demodulate equalized complex data symbols.

The block computes the approximate LLR by using the nearest constellation point to the received
signal with a 0 (or 1) at that bit position. The LLR for a bit b can be defined as

LLR(b) = 1
σ2 min

s ∈ S1
z − s

2
− min

s ∈ S0
z − s

2

where σ2 is the noise variance, z is the received sequence, s is a symbol from the constellation, and
S0, S1 is the set of symbols that corresponds to bits that are 0 and 1, respectively. For more
information, see [1].

Latency

The latency of the block varies based on the input data type and the selected modulation type and
output type.

This figure shows a sample output and latency of the block for input data type fixdt(1,16,14)
when you set the Modulation source parameter to Property, Modulation parameter to QPSK,
Decision type parameter to Approximate log-likelihood ratio, Phase offset parameter to
pi/2, and Output type parameter to Scalar. The latency of the block is 7 clock cycles.

This figure shows a sample output and latency of the block for input data type fixdt(1,16,14)
when you set the Modulation source parameter to Input port, Maximum modulation
parameter to 256-QAM port, Constellation ordering parameter to Default port, Decision type
parameter to Hard, Output type parameter to Vector, and Normalization method parameter to
Unit average power, and specify the modSel input port value as 5 (32-PSK). The latency of the
block is 18 clock cycles.
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Performance

The performance of the synthesized HDL code varies with the target and synthesis options. It also
varies based on the input data type and selected modulation type, decision type, and output type.

This table shows the resource and performance data synthesis results of the block for an input data of
type fixdt(1,16,14) when you set the Modulation source parameter to BPSK, Modulation
parameter to Property the Decision type parameter to Approximate log-likelihood ratio,
and the Output type parameter to Scalar. The generated HDL code is targeted to a Xilinx Zynq-
7000 ZC706 Evaluation Board. The design achieves a clock frequency of 244.02 MHz.

Slice LUTs Slice Registers DSPs Block RAM
332 282 8 0

References
[1] Zhang, Meixiang, and Sooyoung Kim. "Universal Soft Demodulation Schemes for M ‐ary Phase

Shift Keying and Quadrature Amplitude Modulation." IET Communications 10, no. 3
(February 2016): 316–26. https://doi.org/10.1049/iet-com.2015.0730.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).
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OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Functions
qamdemod | pskdemod

Blocks
Rectangular QAM Demodulator Baseband | General QAM Demodulator Baseband | QPSK
Demodulator Baseband

Introduced in R2022a
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DVB-S2 BCH Decoder
Decode and recover message from BCH codeword according to DVB-S2 standard
Library: Wireless HDL Toolbox / Error Detection and Correction

Description
The DVB-S2 BCH Decoder block decodes and recovers messages from a Bose-Chaudhuri-
Hocquenghem (BCH) codeword according to the Digital Video Broadcast Satellite Second Generation
(DVB-S2) standard [1]. The block accepts low-density parity-check (LDPC) decoded codeword data
bits and a stream of control signals. It outputs decoded message data bits, a stream of control signals,
a signal that indicates when the block is ready to accept new input, and an optional signal that
provided the number of corrected errors in the output.

The block supports two forward error correction (FEC) frame types, normal and short. The block
provides an architecture suitable for HDL code generation and hardware deployment. You can use
this block in a DVB-S2 receiver for satellite communication.

Ports
Input

data — Codeword data bits
scalar

Codeword data bits, specified as a Boolean scalar.

The length of the input data must be based on the FEC frame type and code rate according to the
DVB-S2 standard. For more information, see section 5.3 in [1].

For example, if the FEC frame type parameter is set to Normal and the Code rate parameter is set
to 3/5, the length of the input data must be 38,880.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the input frame
• end — Indicates the end of the input frame
• valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.

1 Blocks

1-298



Data Types: bus

codeRateIdx — Code rate index
integer

Code rate index, specified as an integer. Code rate index values range from 0 to 10. Each code rate
index value represents a specific code rate, as shown in this table.

codeRateIdx Value Code Rate
0 1/4
1 1/3
2 2/5
3 1/2
4 3/5
5 2/3
6 3/4
7 4/5
8 5/6
9 8/9
10 9/10

Dependencies

To enable this port, set the Code rate source parameter to Input port.
Data Types: fixdt(0,4,0)

Output

data — Decoded message bits
scalar

Decoded message bits, returned as a Boolean scalar.

The output data type is the same as the input data type.
Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

• start — Indicates the start of the output frame
• end — Indicates the end of the output frame
• valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.
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Data Types: bus

numCorrErr — Number of corrected errors
scalar

Number of corrected errors, returned as a scalar.

• – 1 — Indicates that the block contains errors in its output that cannot be corrected
• 0 — Indicates that the block does not contain errors in its output
• Range from 1 to 12 — Indicates the number of errors corrected in the block output

Dependencies

To enable this port, select the Output number of corrected symbol errors parameter.
Data Types: fixdt(1,5,0)

nextFrame — Block ready indicator
scalar

Block ready indicator, returned as a Boolean scalar.

The block sets this signal to 1 (true) when the block is ready to accept the start of the next frame. If
the block receives an input ctrl.start signal while nextFrame is 0 (false), the block discards the
frame in progress and begins processing the new data.
Data Types: Boolean

Parameters
FEC frame type — FEC frame type
Normal (default) | Short

Select the FEC frame type as Normal or Short.

For more information about normal and short FEC frame types, see [1].

Code rate source — Source for code rate
Property (default) | Input port

Select the code rate source as Property or Input port.

• Property — Select this option to enable the Code rate parameter.
• Input port — Select this option to enable the codeRateIdx input port.

Code rate — Code rate
1/4 (default) | 1/3 | 2/5 | 1/2 | 3/5 | 2/3 | 3/4 | 4/5 | 5/6 | 8/9 | 9/10

Select the code rate.
Dependencies

To enable this parameter, set the Code rate source parameter to Property.

Output number of corrected errors — Number of corrected errors
off (default) | on
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Select this parameter to enable the numCorrErr output port. This port outputs the number of
corrected errors.

Algorithms
BCH codes are cyclic codes that are capable of correcting multiple random errors. This figure shows
the different stages of operations performed in the DVB-S2 BCH Decoder block for decoding a BCH
code. The block calculates syndrome values, determines the error location polynomial using the
Berlekamp-Massey algorithm, finds error locations using the Chien search [2] algorithm, and corrects
the errors. For more information about the Berlekamp-Massey algorithm, see “Algorithms for BCH
and RS Errors-only Decoding”. DVB-S2 specifications define BCH codes over two Galios fields, GF
(216) and GF(214). For more information, see section 5.3 in [1].

Latency

The latency between valid input data and the corresponding valid output data depends on the type of
frame and the number of errors the block can correct.

Latency = (24 × tCorr × 24 × 5) + (24 × m) + N + 26

tCorr is the number of errors the block can correct, which is equal to (N – K) / m), where m is 16 for
normal frames and 14 for short frames, N is the codeword length, and K is the message length
according to the DVB-S2 standard. For more information, see section 5.3 in [1].

This figure shows a sample output and latency of the DVB-S2 BCH Decoder block for the default
configuration when you set the FEC frame type and Code rate parameter values to Normal and
1/4, respectively. The latency of the block is 51,170 clock cycles.
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Performance

The performance of the synthesized HDL code varies with your target and synthesis options.

This table shows the resource and performance data synthesis results when the FEC frame type and
Code rate parameter values are specified as Normal and 1/4, respectively. The generated HDL code
is targeted to the Xilinx ZynqUltrascale+ RFSoC Evaluation Board. The design achieves a clock
frequency of 217 MHz.

Slice LUTs Slice Registers DSPs Block RAM
5586 5294 4 638

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second generation framing

structure, channel coding and modulation systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite applications (DVB-S2), European
Telecommunications Standards Institute, Valbonne, France, 2005-03.

[2] Chien, R. “Cyclic Decoding Procedures for Bose- Chaudhuri-Hocquenghem Codes.” IEEE
Transactions on Information Theory 10, no. 4 (October 1964): 357–63. https://doi.org/
10.1109/TIT.1964.1053699.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).
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OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
DVB-S2 LDPC Decoder | DVB-S2 LDPC Decoder

Introduced in R2022a
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whdlFramesToSamples
Convert frame-based data to sample stream

Syntax
[samples,ctrl,len] = whdlFramesToSamples(frames)
[samples,ctrl,len] = whdlFramesToSamples(frames,postsampleidles,
postframeidles)
[samples,ctrl,len] = whdlFramesToSamples(frames,postsampleidles,
postframeidles,samplesize)
[samples,ctrl,len] = whdlFramesToSamples(frames,postsampleidles,
postframeidles,samplesize,interleaved)

Description
[samples,ctrl,len] = whdlFramesToSamples(frames) serializes frame-based data into a
stream of samples and accompanying control signals. The control signals indicate the validity of the
samples and the boundaries of the frames. The function also returns a vector, len, of the frame size
corresponding to each sample.

[samples,ctrl,len] = whdlFramesToSamples(frames,postsampleidles,
postframeidles) inserts idle cycles in the sample stream, samples. Specify the number of idle
cycles to insert between input samples, postsampleidles, and the number of idle cycles between
frames, postframeidles.

[samples,ctrl,len] = whdlFramesToSamples(frames,postsampleidles,
postframeidles,samplesize) creates a sample stream where each sample is represented by
samplesize values. The function inserts samplesize zeros for each idle cycle requested. The ctrl
and len vectors are the same size as when samplesize is 1.

[samples,ctrl,len] = whdlFramesToSamples(frames,postsampleidles,
postframeidles,samplesize,interleaved) orders the sample stream, assuming the input
samples are interleaved, when interleaved is 1 (true). The interleaved argument is valid only
when samplesize is greater than 1.

Examples

Turbo Encode Streaming Samples

This example shows how to use the LTE Turbo Encoder block to encode data, and how to compare the
hardware-friendly design with the results from LTE Toolbox™. The workflow follows these steps:

1 Generate frames of random input samples in MATLAB®.
2 Encode the data using the LTE Toolbox function lteTurboEncode.
3 Convert framed input data to a stream of samples and import the stream into Simulink®.
4 To encode the samples using a hardware-friendly architecture, run the Simulink model, which

contains the Wireless HDL Toolbox™ block LTE Turbo Encoder.
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5 Export the stream of encoded samples to the MATLAB workspace.
6 Convert the sample stream back to framed data, and compare the frames with the reference

data.

Generate input data frames. Generate reference encoded data using lteTurboEncode.

rng(0);
turboframesize = 40;
numframes = 2;

txBits    = cell(1,numframes);
codedData = cell(1,numframes);

for ii = 1:numframes
    txBits{ii} = logical(randi([0 1],turboframesize,1));
    codedData{ii} = lteTurboEncode(txBits{ii});
end

Serialize input data for the Simulink model. Leave enough time between frames for each frame to be
fully encoded before the next one starts. The LTE Turbo Encoder block takes inframesize + 16
cycles to complete encoding of a frame.

inframes = txBits;

inframesize = size(inframes{1},1);

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes = inframesize+16;

[sampleIn,ctrlIn] = ...
    whdlFramesToSamples(inframes, ...
                          idlecyclesbetweensamples, ...
                          idlecyclesbetweenframes);

Run the Simulink model. The simulation time equals the number of input samples. Because of the
added idle cycles between frames, the streaming input data includes enough cycles for the model to
complete encoding of both frames.

sampletime = 1;
samplesizeIn = 1;
simTime = size(ctrlIn,1);
modelname = 'ltehdlTurboEncoderModel';
open_system(modelname);
sim(modelname);
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The Simulink model exports sampleOut_ts and ctrlOut_ts back to the MATLAB workspace.
Deserialize the output samples, and compare the framed data to the reference encoded frames.

The output samples of the LTE Turbo Encoder block are interleaved with the parity bits.

Hardware-friendly output: S_1 P1_1 P2_1 S2 P1_2 P2_2 ... Sn P1_n P2_n

LTE Toolbox output: S_1 S_2 ... S_n P1_1 P1_2 ... P1_n P2_1 P2_2 ... P2_n

Reorder the samples using the interleave option of the whdlSamplesToFrames function. Compare
the reordered output frames with the reference encoded frames.

sampleOut = sampleOut';
interleaveSamples = true;
outframes = whdlSamplesToFrames(sampleOut(:),ctrlOut,[],interleaveSamples);

fprintf('\nLTE Turbo Encoder\n');
for ii = 1:numframes
    numBitsDiff = sum(outframes{ii} ~= codedData{ii});
    fprintf(['  Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'],ii,numBitsDiff);
end

Maximum frame size computed to be 132 samples.

LTE Turbo Encoder
  Frame 1: Behavioral and HDL simulation differ by 0 bits
  Frame 2: Behavioral and HDL simulation differ by 0 bits

Input Arguments
frames — Frames of input samples
column vector | cell array of column vectors

Frames of input samples, specified as a column vector or a cell array of column vectors. The frames in
the cell array can be different sizes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
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postsampleidles — Number of idle cycles to insert between samples
0 (default) | integer

Number of idle cycles to insert between samples, specified as an integer. The function inserts
samplesize zeros for each idle cycle, and sets all control signals to 0 (false).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

postframeidles — Number of idle cycles to insert between frames
0 (default) | integer

Number of idle cycles to insert between frames, specified as an integer. The function inserts
samplesize zeros for each idle cycle, and sets all control signals to 0 (false).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

samplesize — Number of values representing each sample
1 (default) | positive integer

Number of values representing each sample, specified as a positive integer. The function returns one
set of control signals for each samplesize values.

For example, in the LTE standard, the turbo code rate is 1/3, so each turbo-encoded sample is
represented by one systematic, and two parity values: Sn, Pn1, and Pn2. In this case, set samplesize
to 3.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

interleaved — Order of output samples relative to input order
0 (default) | logical scalar

Order of output samples relative to input order, when more than one value represents each sample,
specified as a logical scalar.

For example, for 1/3 turbo-encoded samples, the input frame can be ordered [S_1 P1_1 P2_1 S_2
P1_2 P2_2] or [S_1 S_2 P1_1 P1_2 P2_1 P2_2]. In the first case, the default output would be
the same order as the input. To achieve that output order for the second input, set interleaved to 1
(true).
Data Types: logical

Output Arguments
samples — Stream of samples
column vector

Stream of samples, returned as a column vector. For N samples in an input frame, the output is N +
samplesize×(N×idlecyclesbetweensamples + idlecyclesbetweenframes) values per
frame.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

ctrl — Control signals accompanying sample stream
M-by-3 matrix
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Control signals accompanying sample stream, returned as an M-by-3 matrix. The matrix includes
three control signals, start, end, and valid, for each samplesize elements in samples. For N
input samples in F frames, M is N + N×idlecyclesbetweensamples +
F×idlecyclesbetweenframes. When you import this variable into Simulink, use a Sample Control
Bus Creator block to convert the signals into the bus type used by the Wireless HDL Toolbox blocks.
Data Types: logical

len — Frame length
column vector of integers

Frame length, returned as a column vector of integers. This value is the number of valid samples in
the corresponding frame for each samplesize elements in samples. This vector is the same length
as ctrl.
Data Types: double

See Also
Blocks
Frame To Samples | Samples To Frame

Functions
whdlSamplesToFrames

Topics
“Streaming Sample Interface”

Introduced in R2017b
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whdlSamplesToFrames
Convert sample stream to frame-based data

Syntax
outframes = whdlSamplesToFrames(samples,ctrl)
outframes = whdlSamplesToFrames(samples,ctrl,maxlen)
outframes = whdlSamplesToFrames(samples,ctrl,maxlen,interleaved)

Description
outframes = whdlSamplesToFrames(samples,ctrl) composes frame-based data from a
sample stream and corresponding control signals. The control signals indicate the validity of the
samples and the boundaries of the frames. The function calculates the maximum frame length from
the input data and control signals, and removes any idle or nonvalid samples from the data.

outframes = whdlSamplesToFrames(samples,ctrl,maxlen) composes frame-based data,
using the maximum frame length. If an input frame described by samples is larger than maxlen, the
function truncates the frame.

outframes = whdlSamplesToFrames(samples,ctrl,maxlen,interleaved) orders the
frame-based data, assuming the input samples are interleaved, when interleaved is 1 (true). The
interleaved argument is valid only when each sample is represented by multiple values. The
function computes the number of values representing each sample by comparing the length of
samples and ctrl.

Examples

Turbo Encode Streaming Samples

This example shows how to use the LTE Turbo Encoder block to encode data, and how to compare the
hardware-friendly design with the results from LTE Toolbox™. The workflow follows these steps:

1 Generate frames of random input samples in MATLAB®.
2 Encode the data using the LTE Toolbox function lteTurboEncode.
3 Convert framed input data to a stream of samples and import the stream into Simulink®.
4 To encode the samples using a hardware-friendly architecture, run the Simulink model, which

contains the Wireless HDL Toolbox™ block LTE Turbo Encoder.
5 Export the stream of encoded samples to the MATLAB workspace.
6 Convert the sample stream back to framed data, and compare the frames with the reference

data.

Generate input data frames. Generate reference encoded data using lteTurboEncode.

rng(0);
turboframesize = 40;
numframes = 2;
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txBits    = cell(1,numframes);
codedData = cell(1,numframes);

for ii = 1:numframes
    txBits{ii} = logical(randi([0 1],turboframesize,1));
    codedData{ii} = lteTurboEncode(txBits{ii});
end

Serialize input data for the Simulink model. Leave enough time between frames for each frame to be
fully encoded before the next one starts. The LTE Turbo Encoder block takes inframesize + 16
cycles to complete encoding of a frame.

inframes = txBits;

inframesize = size(inframes{1},1);

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes = inframesize+16;

[sampleIn,ctrlIn] = ...
    whdlFramesToSamples(inframes, ...
                          idlecyclesbetweensamples, ...
                          idlecyclesbetweenframes);

Run the Simulink model. The simulation time equals the number of input samples. Because of the
added idle cycles between frames, the streaming input data includes enough cycles for the model to
complete encoding of both frames.

sampletime = 1;
samplesizeIn = 1;
simTime = size(ctrlIn,1);
modelname = 'ltehdlTurboEncoderModel';
open_system(modelname);
sim(modelname);

The Simulink model exports sampleOut_ts and ctrlOut_ts back to the MATLAB workspace.
Deserialize the output samples, and compare the framed data to the reference encoded frames.

The output samples of the LTE Turbo Encoder block are interleaved with the parity bits.
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Hardware-friendly output: S_1 P1_1 P2_1 S2 P1_2 P2_2 ... Sn P1_n P2_n

LTE Toolbox output: S_1 S_2 ... S_n P1_1 P1_2 ... P1_n P2_1 P2_2 ... P2_n

Reorder the samples using the interleave option of the whdlSamplesToFrames function. Compare
the reordered output frames with the reference encoded frames.

sampleOut = sampleOut';
interleaveSamples = true;
outframes = whdlSamplesToFrames(sampleOut(:),ctrlOut,[],interleaveSamples);

fprintf('\nLTE Turbo Encoder\n');
for ii = 1:numframes
    numBitsDiff = sum(outframes{ii} ~= codedData{ii});
    fprintf(['  Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'],ii,numBitsDiff);
end

Maximum frame size computed to be 132 samples.

LTE Turbo Encoder
  Frame 1: Behavioral and HDL simulation differ by 0 bits
  Frame 2: Behavioral and HDL simulation differ by 0 bits

Input Arguments
samples — Stream of samples
column vector

Stream of output samples, specified as a column vector. The vector can include idle cycles between
samples and between frames. Idle cycles are discarded. The frames represented by the stream can be
different sizes. The vector length, N, must be an integer multiple of the length of the ctrl matrix, M.
Differing lengths mean that each sample is represented by N/M values.

For example, in the LTE standard, the turbo code rate is 1/3, so each turbo-encoded sample is
represented by one systematic, and two parity values: Sn, Pn1, and Pn2. In that case, the length of
samples must be three times the length of ctrl.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

ctrl — Control signals accompanying sample stream
M-by-3 matrix

Control signals accompanying the sample stream, specified as an M-by-3 matrix. The matrix includes
three control signals, start, end, and valid, for each sample in samples. Each sample can be
represented by more than one value. In that case, the length of samples must be an integer multiple
of M.

For example, in the LTE standard, the turbo code rate is 1/3, so each turbo-encoded sample is
represented by one systematic, and two parity values: Sn, Pn1, and Pn2. In that case, the length of
samples must be three times the length of ctrl.
Data Types: logical
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maxlen — Maximum frame length
integer

Maximum frame length, specified as an integer. The input frames in samples can be different sizes.
The output column vector reflects the size of the input frame, according to ctrl. If a frame is larger
than maxlen, the function truncates the frame and returns a warning message.
Data Types: double

interleaved — Order of output samples relative to input order
0 (default) | logical scalar

Order of output samples relative to input order, when more than one value represents each sample,
specified as a logical scalar.

For example, 1/3 turbo-encoded samples are represented by [S1 P11 P12 S2 P21 P22]. To reorder
the samples so that systematic and parity values are grouped together, set interleaved to 1 (true).
The output order is then [S1 S2 P11 P21 P12 P22].
Data Types: logical

Output Arguments
outframes — Frames of output samples
column vector | cell array of column vectors

Frames of output samples, returned as a column vector or a cell array of column vectors. The size of
the output column vector reflects the size of the input frame, as determined by the control signals in
ctrl.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi

See Also
Blocks
Frame To Samples | Samples To Frame

Functions
whdlFramesToSamples

Topics
“Verify Turbo Decoder with Streaming Data from MATLAB”
“Streaming Sample Interface”

Introduced in R2017b
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samplecontrolbus
Create sample-streaming control bus

Syntax
samplecontrolbus

Description
samplecontrolbus declares a samplecontrol type bus instance in the workspace. This instance is
required for HDL code generation. Call this function before you generate HDL code from Wireless
HDL Toolbox blocks.

Examples
Declare Bus in Base Workspace

In the InitFcn callback function of your Simulink model, or at the MATLAB® command line, use this
command to declare a samplecontrol type bus instance in the base workspace. If you create your
model with the Wireless HDL Toolbox model template, this step is done for you.

evalin('base','samplecontrolbus')

If you do not declare an instance of samplecontrolbus in the base workspace, you might encounter
this error when you generate HDL code in Simulink.

Cannot resolve variable 'samplecontrol'

See Also
Blocks
Frame To Samples | Samples To Frame

Topics
“Streaming Sample Interface”

Introduced in R2017b
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